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Abstract

The main objects of study of this thesis are 0-dimensional subschemes of affine spaces. More

precisely, I have studied the following two aspects concerning them:

• the interaction between 0-dimensional subschemes and linear group actions on An ,

• the computation of the Behrend number of 0-dimensional schemes in order to better

understand the Hilbert scheme of points.

In the first chapter of the thesis I have constructed the moduli spaces of certain G -equivariant

coherent OA2 -modules (G -constellations), introduced by Alastair Craw in 2001, which are sta-

ble with respect to a GIT stability condition. In addition, I studied the associated chamber

decomposition giving an explicit combinatorial description of the chambers.

In the second part of the thesis I have computed, mostly applying techniques from toric

geometry, the Behrend number of a large number of fat points of the affine plane. This invariant

had been abstractly defined by Behrend in 2009, but even for a scheme with only one point

the (few) existing methods to calculate it could not be applied.

The thesis is mainly based on the content of the following two preprints:

• “Moduli spaces of Z/kZ-constellations over A2". [30, 2022]

• “On the Behrend function and the blowup of some fat points", with A. T. Ricolfi.[31, 2022]

https://arxiv.org/abs/2205.07492
https://arxiv.org/abs/2202.06904
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Introduction

The objects of interest in algebraic geometry are algebraic varieties, i.e. common zero loci of

collections of polynomials. The easiest algebraic variety is just a d -tuple of distinct points, say

in some fixed affine spaceAn . More generally, one is interested in 0-dimensional subschemes

Z ⊂An , obtained as spectra of semilocal artinian C-algebras of finite type (we say fat point

in the local case). Such schemes are called smoothable when they are a limit of (a disjoint

union of) distinct points. Here, by limit, we mean that there exist a flat family of 0-dimensional

subschemes of An , X B ,←→
ϕ

with special fibre the scheme Z and with general fibre an

d -tuple of distinct points.

However, not all 0-dimensional schemes are smoothable. In technical terms, this is cap-

tured by the reducibility of the moduli space parametrising 0-dimensional subschemes Z ⊂An

of fixed length d . This space, introduced by Grothendieck, is known as the Hilbert scheme of d

points Hilbd (An ). Even in low dimensions, this moduli space is very singular and complicated.

For instance, although it is known (see for instance [11]) that, for n ≥ 4, Hilbd (An ) is irreducible

for d ≤ 7 and reducible for d ≥ 8, the irreducibility of Hilbd (A3) for 11< d < 78 (see [18] and the

references therein) is currently unknown. Likewise, it is not known, for any d ≥ 78, whether

Hilbd (A3) has non-reduced components. Finally, the existence of a new component, for d ≥ 78,

has no constructive proof, so there are no explicit examples of new components as well as of

non-smoothable fat points of embedding dimension 3.

Unluckily, as observed for example in [41], being reducible is only one of the possible

pathologies that occur on the Hilbert scheme of points. Indeed, any kind of singularity occurs.

Another area of algebraic geometry in which the study of 0-dimensional schemes plays a

central role is Representation Theory, in particular, the theory of finite subgroups of GL(n ,C).
When a finite linear group G acts on An , there exists a G -equivariant notion of 0-dimensional

subscheme of An , namely that of G -cluster (see Definition 1.0.1). In this context, it is possible

to also introduce a notion of G -Hilbert scheme G -Hilb(An ) (see Definition 1.0.4), i.e. the

fine moduli space of G -clusters. When G < SL(3,C) the space G -Hilb(A3) has several nice

properties (see [9]) and it has been studied in many areas of Mathematics and Mathematical

Physics.

Although, thanks to the results in [9], today a lot is known about G -Hilb(A3) when G <

SL(3,C), in some instances this space has not been concretely constructed and its geometry

has not been fully studied. Equally fascinating is the case n ≥ 4, where much less is known,

and also many definitions should be revised. For instance, when n ≥ 4, it is not in general clear

how the McKay correspondence should be formulated.

Thanks to a GIT argument (see [9, 15, 30]), G -Hilb can be interpreted as the moduli space

v
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of certain stable G -equivariant coherent sheaves, namely the G -constellations (see Defini-

tion 1.0.8), with respect to a GIT stability condition. This allows one, as the stability condition

varies, to build many other moduli spaces that share several nice properties with G -Hilb. Yet

much less is known about them.

Moduli spaces of G -constellations

One of the widest research areas in algebraic geometry is the resolution of singularities. In

particular, when X = An/G for some finite subgroup G < SL(n ,C), one can ask if a crepant

resolution (see Definition 0.3.1 and Section 0.5) ϕ : Y → X exists and, if it does, what is its

relation with the group G . The first answer to those questions was given, in dimension 2, by

the so-called McKay correspondence for A-D-E singularities (see [47, 29]). Nowadays, crepant

resolutions of singularities of the form An/G , where G ⊂ SL(n ,C) is a finite subgroup, appear

in several fields of Algebraic Geometry and Mathematical Physics, for example see [10, 40, 61]
and the references therein.

In general, crepant resolutions may not exist. Nevertheless, it is known that they exist in

dimension 2 and 3: see [19] for dimension 2, and see Roan [63, 64], Ito [38] and Markushevich

[50] for dimension 3. In particular, the 3-dimensional case was solved by a case by case analysis,

taking advantage of the fact that the conjugacy classes of finite subgroups of SL(3,C) had been

listed, for example in [72].
More recently, in [9], Bridgeland, King and Reid proved in one shot that a resolution always

exists in dimension 3. The resolution that they proposed is made in terms of G -clusters, i.e.

G -equivariant 0-dimensional subschemes Z of An such that H 0(Z ,OZ )∼=C[G ] as G -modules

(Definition 1.0.1). In particular, in [9] it was proved that there exists a crepant resolution

G - Hilb(A3)→A3/G

where G -Hilb(A3) is the irreducible component of the fine moduli space of G -clusters con-

taining free orbits. Notice that this result had already been obtained for abelian actions by

Nakamura in [52].
In particular, G -Hilb(An ) is a closed G -invariant subscheme of the Hilbert scheme of

|G | points in An . The existence, for n = 2,3, of a crepant resolution of singularities ϕ :

G - Hilb(An )→ X was proven in [9] where the authors also showed that there is an equiva-

lence of categories between the derived category of G - Hilb(An ) and the derived category of

coherent G -sheaves onAn . Nonetheless, it is well known that, in higher dimensions, a crepant

resolution may not exist and, even if it exists, it may not be given by G - Hilb(An ).
In [52], Nakamura also introduced, in a similar way, the notion of G -QuotF (A3) and he

asked for which coherent G -sheavesF ∈Ob Coh(A3) the variety G -QuotF (A3) is a projective

crepant resolution of A3/G .

Alastair Craw in his PhD thesis [14] generalized the notion of G -cluster to the notion

of G -constellation, i.e. 0-dimensional G -equivariant coherent OAn -module F such that

H 0(An ,F ) ∼= C[G ] as representations. Moreover, he introduced a GIT stability notion, in

the sense of King, on the category of G -constellations. Afterwards, in [15], Craw and Ishii
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observed that, if G < SL(3,C) is abelian, then, for a generic stability condition θ , there exists a

crepant resolution of singularities

Mθ →A3/G

whereMθ is the irreducible component of the fine moduli space of θ -stable G -constellations

that contains free orbits. Moreover, in the same paper, they proved that all crepant resolutions

are of the above form and they differ from each other by a series of flops induced by wall-

crossing in the space of generic stability conditions and they conjectured that the same is true

for any finite subgroup of SL(3,C).
Very recently, a preprint [71] containig the proof of Craw-Ishii’s conjecture has appeared.

Unfortunately, there was no time to connect it with this thesis. We will briefly comment on

this proof in Section 1.7.

It was observed in [15] that the results in [9] imply that the space of generic stability condi-

tions Θgen is a disjoint union of connected components called chambers. Moreover, in each

chamber C , the notion of stability is constant, i.e. for any θ ,θ ′ ∈ C , a G -constellation is

θ -stable if and only if it is θ ′-stable. Therefore, there is a canonical isomorphismMθ andMθ ′

for all θ ,θ ′ ∈C and one can writeMC instead ofMθ .

In the first part of the thesis, we will focus on the 2-dimensional abelian case, i.e. the

case when G < SL(2,C) is a finite abelian, and hence cyclic, subgroup. In the literature the

singularityA2/G is called an A|G |−1 singularity. This case is particularly simple from the point

of view of the resolution because we know, from classical surface theory, that there is a unique

minimal crepant resolution. Therefore, all the moduli spacesMθ are isomorphic as quasi-

projective varieties. As a consequence, in order to distinguish two chambers it is enough to

study their universal familiesUC ∈Ob Coh(MC ×A2).
In Chapter 1, which mostly follows [30], we give an explicit combinatorial description of the

moduli spacesMθ , in the 2-dimensional abelian case, in terms of the chambers decomposition

studied by Craw and Ishii. In particular, this description answers, in dimension 2, the question

raised by Nakamura in [52] about G -QuotF . The key tool used is the following generalisation

of [29, Proposition 2.4].

Theorem A ([30], Theorem 1.5.2). Let π : A2 → X be the projection map where X = A2/G

and G < SL(2,C) is an abelian finite subgroup and let ϵ : Y → X be the crepant resolution of

singularities. IfK ⊂OA2 is a coherent (G -invariant) monomial ideal sheaf, then the OY -module

ϵ∗π∗K /TorOY
ϵ∗π∗K

is locally free of rank |G |.

The usefulness of Theorem A consists for example in the fact that, analogously to [29,

Proposition 2.4], it provides the McKay correspondence and a generalisation of it would help

to get higher dimensional versions of the McKay correspondence. The proof of Theorem A will

be constructive, meaning that we will give a commutative algebra construction that allows

one to write an explicit formula for the tautological bundle

Rθ ∈Ob Coh(Mθ ),
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i.e. the pushforward of the universal familyUθ ∈ Ob Coh(Mθ ×A2) via the first projection.

This construction can be easily implemented using some software such as Macaulay2 [32].
As a consequence of Theorem A, we have obtained the following theorem, which, having a

constructive proof, allows one to build explicitly the objects mentioned in the statement.

Theorem B ([30], Corollary 1.6.8). Given G as in Theorem A and a generic stability condition θ ,

there exists one (in fact infinitely many) G -invariant coherent ideal sheafK ⊂OA2 such that

Mθ can be identified with a closed G -invariant subvariety of QuotK|G |(A
2), where,

QuotK|G |(A
2) =

�

K ↠F
�

�F ∈Ob Coh(A2), dim H 0(A2,F ) = |G |
	

/∼ .

The theory developed to get the above result also allowed us to detect a special collection

S of chambers, the set of simple chambers. They have the property that any irreducible G -

constellation belongs to, at least, one simple chamber. The set S is defined in terms of the

toric G -constellations inMθ for θ generic and its cardinality is computed in Section 1.4. The

following statement collects the mentioned results.

Theorem C ([30], Remark 1.4.16, Theorems 1.3.17 and 1.4.15). If G < SL(2,C) is an abelian sub-

group of cardinality k , there are k ·2k−1 isomorphism classes of irreducible toric G -constellations

and

• the space of generic stability conditions is the disjoint union of k ! chambers,

• the set of simple chambers has cardinality k ·2k−2.

The first point in Theorem C can be also recovered, via different arguments, from the theory

developed by Kronheimer in [47] (See also [12, Chapter 3-§3] for the algebraic interpretation),

but the approach to the abelian case here is different and it helps to prove the other results.

In order to prove Theorem C, we will give an exhaustive combinatorial description of the

toric points of the spacesMθ in terms of combinatorial objects called skew Ferrers diagrams.

Such diagrams are standard tools in many branches of mathematics, e.g. enumerative geome-

try, group theory, commutative algebra etc (for example [8, 27, 51]). In order to define simple

chambers, we will need to construct chamber stairs (Definition 1.4.2), combinatorial objects

that we will use to encode all the data of a chamber C .

It is remarkable that, even if Theorem A is proven under the 2-dimensional and abelian

hypotheses, in all the computational examples the statement happens to be true even in more

general cases. For instance, we tested via Macaulay2 [32] many 2-dimensional bidihedral

cases. In dimension 3 the situation is more delicate since there are several crepant resolutions.

Nevertheless, choosing the coherent ideal G -sheaf appropriately gives similar results, again

for specific examples (see Remark 1.6.3). In general, the case when G < SL(3,C) is non-abelian

is still largely unknown. Moreover, even in the abelian case, it is not clear for which coherent

G -sheavesF the variety G -QuotF (A2) should be isomorphic toMθ for some generic θ .

In order to investigate this situation and to generalize Theorem A to a more general setting,

we began to study the action of the Klein group H168
∼=PSL(2,F7) on A3. In particular, we built

a crepant resolution (see Section 1.8) alternative to the one constructed by Markushevich in

[50]. Comparing them will help in the construction of all the other resolutions and to construct

explicitly the moduli spaces of H168-constellations.
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Another possible way to explicitly construct moduli spaces of G -constellations, for G

non-abelian should be to combine the ideas in [53, 54]with the approach of Section 1.5.

The Behrend number of fat points via blowups

The Hilbert scheme of d points in the affine spaceAn has been defined in [34] and it is a central

object in modern algebraic geometry. However, not so much is known about it.

In dimension 2, Fogarty proved, in [23], that Hilbd (A2) is a smooth quasi-projective variety

and that the Hilbert-Chow morphism

Hilbd (A2)→ Symd (A2)

is a resolution of singularities. Another important result is the connectedness theorem by

Hartshorne in [35], which states that any Hilbert scheme (over a connected variety) is con-

nected. In dimension n > 2 the situation is more complicated. For instance, it was observed

that Hilbd (An ) is singular for any d ≥ 4.

One can also consider the punctual Hilbert scheme, i.e. the closed quasi-projective subvari-

ety Hilbd (An )0 ⊂Hilbd (An ) that parametrises fat points supported at the origin 0 ∈An . Clearly,

one can acquire information about Hilbd (An ) from Hilbd (An )0. For instance, they may share

irreducible components (see [11]). Iarrobino (in [36]) and Briançon (in [8]) independently

proved that the punctual Hilbert scheme can be stratified according to the Hilbert–Samuel

function of fat points and they explicitly described this stratification in some instances. More-

over, in [37], Iarrobino proved, via a dimension argument, that Hilb78(A3) is reducible. His

proof passes trough the reducibility of Hilb78(A3)0. He also pointed out that there is no reason

why 78 should be the smallest number with this property. Unfortunately, the stratification

provided by the Hilbert–Samuel function did not help us to get new answers about the many

questions concerning Hilbert schemes of points. Therefore, a good idea might be to focus on

some other invariant. One possibility is given by the Behrend function.

In general, given a scheme X of finite type over C, the Behrend function (Section 2.1) is

a constructible function νX : X (C)→Z intrinsically attached to the scheme X . When X is a

fat point, i.e. when X consists, topologically, of just one point, the Behrend function is, in

fact, a number. Moreover, (Section 2.1) my coauthor and supervisor Andrea T. Ricolfi (SISSA)

and I observed that, in this case, the Behrend number can be computed as the sum of the

multiplicities of some effective divisors. Thus, νZ > 0 for all fat point Z .

Currently, basically no method is known for calculating the Behrend function of fat points.

Therefore, it is possible to calculate this invariant only in very simple cases such as the local

complete intersection case. Since we expect this function to help us to better understand the

behavior of the punctual Hilbert scheme, we have decided to evaluate it (see [31]) for the fat

points of the affine spaces, in particular A2 and A3.

In the paper [31]we have developed an effective technique to compute the Behrend func-

tion of a large class of fat points.

As a side result, we were able to describe the geometry of many surfaces constructed as

blowup of the affine plane at reducible and non-reduced centres. The same kind of analysis,

in dimension 3, is much more complicated. In theory, it is fully described by the MMP theory
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(see [46, Chapter 2] for an introduction), but, in practice, many areas are still to be investigated.

Some examples of similar birational constructions, in dimension 3, will be given in Section 1.8

and Appendix A.

We mostly focus on the case where X sits inside the affine plane A2, i.e. it has embedding

dimension 1 or 2. Such planar situation, arguably the easiest one, already presents (interesting)

technical difficulties, confirming that the Behrend function is a subtle invariant of a scheme,

no matter how many points the scheme has! For instance, it is easy to observe that

νX = length(X )

in many special cases (see Section 2.2.2 for several examples), but in general the length of the

fat point, namely the number length(X ) =χ(OX ) = h 0(OX ), is not equal to νX , and is neither a

lower bound nor an upper bound for νX . As an example (cf. Example 2.2.7 for more details),

consider the ideal m= (x , y )⊂C[x , y ]. Then, if Xd = SpecC[x , y ]/md for d > 1, one has

νXd
= d <

d (d +1)
2

= length(Xd ).

Our main technique is a fine analysis of the multiplicities of the components of the excep-

tional divisor of the blowup BlX AN , where X ,→AN is a given fat point. These multiplicities

add up to νX by Lemma 2.2.2.

The following result is obtained combining toric geometry techniques with a deep analysis

of the blowups of A2 along the given ideals.

Theorem D (Theorems 2.3.11 and 2.3.13). Let 1≤ i1 < · · ·< is be a strictly increasing sequence

of positive integers. Consider the ideal K =
∏

1≤k≤s (x + f (y ))+mik ⊂C[x , y ], where f (y ) ∈C[y ]
has degree smaller than is . Then K has colength

∑

1≤k≤s

∑

1≤ j≤k i j , and its Behrend number is

νC[x ,y ]/K =
s
∑

k=1

k
∑

j=1

i j +
s−1
∑

j=1

i j (s − j ).

In particular, when ik = k for all k = 1, . . . , s , the ideal Ks =
∏

1≤k≤s (x + f (y ))+mk has colength
�s+2

3

�

, and its Behrend number is

νC[x ,y ]/Ks
=

s (s +1)(2s +1)
6

.

Ideals as in the statement of Theorem D are called towers in the thesis (cf. Definition 2.3.4),

and they are called complete towers when ik = k for all k . In Theorem 2.3.17 we give a formula

for the Behrend number of a product of two complete towers; in Section 2.4 we examine

the case of arbitrary finite products of towers, and we present an algorithm to compute the

Behrend number also in this case.

Theorem D covers a large class of ideals, including some monomial ideals. We now present

a few more explicit formulas.

If a monomial ideal I ⊂ C[x , y ] is normal (which means that BlI A2 is normal, cf. Sec-

tion 0.10), then, by Corollary 2.6.11, it factors uniquely as a product

(△) I =
t
∏

k=1

n
δk
αk ,βk

,
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where nα,β ⊂C[x , y ] denotes the normalisation of the ideal (xα, y β ) and gcd(αk ,βk ) = 1 for all

k = 1, . . . , t .

The decomposition (△) can be seen as an explicit instance of a more general ‘unique

factorisation theory’ originally developed by Zariski [73] and more recently by Lipman (see [48,

Section V] and the references therein).

Thanks to the following explicit result, we know the Behrend number of nα,β .

Theorem E (Theorem 2.6.5). Let α,β > 0 be two positive integers, and let nα,β ⊂C[x , y ] be the

normalisation of the ideal (xα, y β ). Then,

νC[x ,y ]/nα,β
=

α ·β
gcd(α,β )

.

One can describe thoroughly the blowup BlI A2 along a normal monomial ideal as in

Equation (△) via toric geometry (cf. Corollary 2.6.10), and this allows one to generalise the

identity in Theorem E to cover all normal monomial ideals in C[x , y ].
In fact, the existence of the factorisation (△) readily implies the following statement.

Theorem F (Theorem 2.6.12). Let I ⊂C[x , y ] be a normal monomial ideal of finite colength.

There is a bijective correspondence
¨

ideals nδα,β appearing in the

factorisation (△) of I

«

1:1←→

¨

irreducible

components of EIA2

«

,

where EIA2 is the exceptional divisor in the blowup of A2 with centre the ideal I . In particular,

if J ⊂C[x , y ] is an arbitrary monomial ideal and I = J is its normalisation, then E JA2 has at

most t irreducible components, where t is as in Equation (△).

The Behrend number of a non-normal monomial ideal in C[x , y ] can be computed from

some explicit data defined on the normalisation of BlI A2. In fact, in Section 2.7 we prove a

general statement which is true in all dimensions, not just in dimension 2. We consider an

arbitrary fat point I ⊂C[x1, . . . , xN ], and the normalisation morphism

µI : ZI →BlI AN .

We let {Di | 1≤ i ≤ s } be the irreducible components of the exceptional divisor EIAN ⊂BlI AN ,

we set YI = µ−1
I (EIAN ) and for each i = 1, . . . , s we let {V (i )j | 1≤ j ≤ ki } be the irreducible

components of YI dominating Di . We then consider the two numbers

di j = deg
�

µI

�

�

V (i )j
: V (i )j →Di

�

, ei j =multV (i )j
(YI ).

We obtain the following result.

Theorem G (Theorem 2.7.2). Let X ,→AN be a fat point defined by an ideal I ⊂C[x1, . . . , xN ].
Then, there is an identity

νX =
s
∑

i=1

ki
∑

j=1

di j ei j .

In Section 2.8 we argue, via an explicit example, that the toric techniques used in [31] are

not directly applicable to handle fat points in higher dimensional affine spaces AN , for which

a finer analysis is required. For instance, Theorem F fails. However, Theorem G is true in all

dimensions.
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Organisation of contents

After providing, in Chapter 0, some technical preliminaries and recalling some known facts, we

will focus, in Chapter 1, on the study of G -constellations and, in Chapter 2, on the computation

of the Behrend number of fat points.

In Chapter 0 we set up the notation, we review the notions of quotient singularities and

their resolutions, fat points, cones, blowups and their normalisations.

Many of the results of this thesis have already appeared in the preprints [31, 30]. Chapter 1

mostly follows [30] and Chapter 2 mostly follows [31]. More precisely, Section 1.0 is an introduc-

tion to the theory of G -constellations and Section 1.1 is a brief introduction to the singularities

of type Ak−1 and to their crepant resolutions. Moreover, with respect to [30], a description of

the partial resolutions of these singularities has been added. In Section 1.2, we will prove that

the toric G -constellations are completely described in terms of certain diagrams which we

will call G -stairs (Definition 1.2.19). The remaining sections of Chapter 1 contain the proofs of

the main theorems of the chapter. More precisely, Theorem C is proven in Sections 1.3 and 1.4,

and Theorem A is proven in Section 1.5. Finally, in Section 1.8, we will construct a crepant

resolution alternative to the one constructed by Markushevich in [50]. This last construction

is not present in [30].
Chapter 2 is structured as follows. In Section 2.1 we recall the definition of the Behrend

function. Moreover, we prove the key result (Lemma 2.2.2) that we will exploit to perform

our computations, and we compute a number of examples of Behrend functions using its

elementary properties. In Section 2.3 we introduce towers, we completely describe their

blowups (subsection 2.3.2), and we prove Theorem D. An algorithm to generalise such results

is explained in Section 2.4. In Section 2.5 we prove Theorem E and Theorem F. In Section 2.7

we express the Behrend number of an arbitrary fat point I ⊂ C[x1, . . . , xN ] in terms of data

defined on the normalisation ZI → BlI AN , thus proving Theorem G. In Section 2.8 we give

an example involving fat points X ⊂A3 showing that the analysis we carried out inA2 needs

nontrivial modifications in order to work in higher dimension.

In Appendix A we will discuss the blowup of a smooth threefold with centre two transverse

curves.
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Chapter 0

Background material

In this chapter we fix the notation used throughout the thesis, and we collect some frequently

used results.

Conventions

We work over the field C of complex numbers. All schemes will be separated and of finite

type over C. A variety will be an integral (reduced and irreducible) scheme over C. If X is a

scheme and V ⊂ X is a subvariety, we denote by OX ,V the local ring of X at the generic point

of V . When V is an irreducible component of X , we denote by multV X the length of the local

artinian ring OX ,V , viewed as a module over itself. The function field of a variety X , namely

the residue field of OX ,X , will be denoted C(X ). We shall denote by m = (x , y ) ⊂ C[x , y ] the

maximal ideal of the origin 0 ∈A2.

0.1 Blowups and exceptional loci

Given a variety M along with an ideal sheaf I ⊂OM cutting out a subscheme X =V (I ) ,→M ,

we shall denote by

BlI M =POM

�

⊕

i≥0

I i

�

M←→
ϵI

the blowup of M along X . Sometimes we shall adopt the notation BlX M , often used in the

literature. The map ϵI is a projective birational (surjective) morphism of varieties which

restricts to an isomorphism over M ∖X . The exceptional divisor attached to such a blowup is,

by definition, the effective Cartier divisor

(0.1.1) EIM ,→BlI M

defined by the (invertible) sheaf of ideals

ϵ−1
I (I ) · OBlI M = image

�

ϵ∗II →OBlI M

�

.

1
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In other words, EIM =BlI M ×M X . If CX /M = SpecOX

�
⊕

i≥0I i /I i+1
�

is the normal cone of

the inclusion X ,→M , then (0.1.1) agrees with the natural inclusion of the projective cone

P (CX /M ) =POX

�

⊕

i≥0

I i /I i+1

�

= EIM

inside BlI M . Equivalently, the diagram

P (CX /M ) BlI M

X M

←→

←- →

←→ ϵI

←- →

is cartesian. Finally, we set

Exc(ϵI ) = (EIM )red = P (CX /M )red,

and we call this reduced closed subscheme of BlI M the exceptional locus of the blowup.

Sometimes, when no confusion is likely to arise, we shall denote it by Exc(BlI M ).

Notation 0.2. More generally, given a projective birational morphism f : Y → Z between

quasiprojective varieties, we shall denote by Exc( f )⊂ Y the reduction of the preimage of the

indeterminacy locus of the birational map f −1.

We shall make extensive use of the following results.

Lemma 0.2.1 ([65, Tag 01OF]). Let M be a scheme, and let I1,I2 ⊂ OM be quasicoherent

sheaves of ideals. Let ϵI1
: BlI1

M →M be the blowup of M along I1. Then there is a canonical

isomorphism of M -schemes

Blϵ−1
I1
(I2)·OBlI1

M
(BlI1

M ) BlI1·I2
(M ).←→∼

Proposition 0.2.2 ([21, Prop. IV-22]). Let M = Spec A be an affine scheme, and consider a

closed subscheme X =V ( f0, f1, . . . , fr ) ,→M . The blowup of M along X agrees with the closure

in M ×
A
Pr

A =P
r
A of the graph of the morphism

α( f0, f1,..., fr ) : M ∖X →Pr
A

induced by the map O ⊕(r+1)
M →OM sending (a0, a1, . . . , ar ) 7→

∑

0≤i≤r ai fi .

0.3 Singularities and their resolutions

Definition 0.3.1. Let X be a quasi-projective variety. A resolution of singularities of X is a

birational projective morphism

ϵ : Y → X

such that Y is smooth. We will say that a resolution of singularities ϵ : Y → X is crepant if

ωY
∼= ϵ∗ωX , whereω• denotes the canonical bundle.

https://stacks.math.columbia.edu/tag/01OF
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Definition 0.3.2. Let X be a quasi-projective variety. A partial resolution of singularities is a

sequence

Y Z X .←→
f ←→

g

where f , g are projective and birational morphisms and g ◦ f is a resolution of singularities.

Notation 0.4. Sometimes we will omit the morphisms and we will refer to the varieties Y and

Z respectively as resolution and partial resolution of the singularities of X .

The following classical result by Hironaka ensures the existence of the resolutions of singu-

larities (see [46, INTRODUCTION] and reference therein).

Theorem 0.4.1 (Weak Hironaka Theorem). Let X be an irreducible reduced algebraic variety

over C (or a suitably small neighbourhood of a compact set of an irreducible reduced analytic

space) and I ⊂OX a coherent sheaf of ideals defining a closed subscheme (or subspace) Z . Then

there are a smooth variety (or analytic space) Y and a projective morphism f : Y → X such that

• f ∗I ⊂OY is an invertible sheaf OY (−D ) and

• EI X +D is a s.n.c. divisor, i.e. its irreducible components are smooth and they intersect

transversally.

Clearly resolutions of singularities are not unique. For instance, the blowup, with a smooth

centre, of a resolution produces another resolution. Although Theorem 0.4.1 guarantees the

existence of resolutions of singularities, it is not true, in general, that crepant resolutions exist.

Even if they exist, in dimension greater than 2, they may not be unique. Nevertheless, as

mentioned in the introduction, for quotient singularities of the form An/G , with G < Sl(n ,C)
finite and n ≤ 3, there are crepant resolutions. For example, one is G -Hilb(An ) (see Chapter 1).

0.5 Finite group action on affine spaces

Given a finite group G and a representation ρ : G →GL(n ,C), we have an action of G on the

polynomial ring C[x1, . . . , xn ], given by

G ×C[x1, . . . , xn ] C[x1, . . . , xn ]

(g , p ) p ◦ρ(g )−1

←→

←[ →

where p and ρ(g )−1 are thought respectively as a polynomial and a linear function. This is

equivalent to endow the structure sheaf OAn of the affine space An with an action of the group

G , which, of course, is the lift of the action onAn induced by ρ. Similarly, the representation

ρ induces an action of G on the tangent and cotangent sheaves and their tensor and wedge

products, i.e. sheaves of the form
s
∧

i=1

T ⊗mi
An

where TAn is the tangent sheaf, for some m1, . . . , ms ∈Z.
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Out of this, we can build the quotient singularity

An/G = SpecC[x1, . . . , xn ]
G

whose points parametrize the set-theoretic orbits of the action of G on An induced by ρ.

Notice that, if the representation ρ takes values in Sl(n ,C), then, the action induced by G

on the canonical sheafωAn =OAn
·d x1 ∧ · · · ∧d xn is trivial because

g ·d x1 ∧ · · · ∧d xn = det
�

g
�−1

d x1 ∧ · · · ∧d xn = d x1 ∧ · · · ∧d xn .

As a consequence, the singular variety An/G has trivial canonical bundle.

Given a representation ρ : G →GL(n ,C), we will say that a coherent sheafF ∈Ob Coh(An )
is ρ-equivariant (a ρ-sheaf in the sense of [9]) if there is a lift of the action G ↶An induced by

ρ, i.e. for all g ∈G there are morphisms λFg :F →ρ(g )∗F such that:

• λF1G
= idF ,

• λFhg =ρ(g )
∗(λFh ) ◦λ

F
g ,

where 1G is the unit of G . In particular, this induces a structure of representation on the vector

space H 0(An ,F ) as above

G ×H 0(An ,F ) H 0(An ,F )

(g , s ) (λFg )
−1 ◦ρ(g )∗(s ).

← →

←[ →

Whenever the representation is an inclusion G ⊂GL(n ,C)we will omit the representation

and we will say that the sheaf is G -equivariant (or that it is a G -sheaf ).

Let G be a finite group. Recall that the regular representation is the representation induced

by the canonical (left) action of g on C[G ], where

C[G ] =
⊕

g∈G

C · g .

0.6 Fat points, monomial ideals and the Hilbert scheme

Definition 0.6.1. A fat point is a C-scheme X isomorphic to Spec R , where (R ,mR ) is a lo-

cal artinian C-algebra. The embedding dimension of a fat point X = Spec R is the integer

dimC(mR/m
2
R ). When this number is 1, we say that X is curvilinear.

Thus a fat point is a C-scheme X such that Xred ,→ X → SpecC is the identity. In other

words, it is a 0-dimensional C-scheme whose underlying topological space is just one point.

The embedding dimension of X is the smallest dimension of a smoothC-scheme containing

X as a closed subscheme.

Definition 0.6.2. The length of a fat point X = Spec R is defined as

length(X ) = dimCH0(X ,OX ) = dimC(R ).
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Notation 0.7. Occasionally, for the sake of readability, if R =C[x1, . . . , xN ]/I defines a fat point

X = Spec R ⊂AN , we shall write ℓR instead of length(X ).

Up to isomorphism of C-schemes, there is only SpecC of length 1, only SpecC[t ]/t 2 of

length 2, and only SpecC[t ]/t 3 and SpecC[x , y ]/(x 2, x y , y 2) of length 3, the latter being of

embedding dimension 2. If k is an arbitrary algebraically closed field, it is known that there is

a finite number of isomorphism classes of local artinian k-algebras of length n ≤ 6, and that

this number is infinite when n > 6. See [58] for a complete classification of finite dimensional

algebras, and [51] for a classification of k[x , y ]-modules of length up to 4.

Let A =C[x1, . . . , xN ] be a polynomial ring. We say that an ideal I ⊂ A is of finite colength

equal to n if A/I is a finite dimensionalC-vector space of dimension n , i.e. if X = Spec A/I is a

disjoint union of fat points. Amongst all fat points X ⊂AN of length n , there are finitely many

special ones that are cut out by monomial equations. There is a bijective correspondence

between monomial ideals of colength n in C[x1, . . . , xN ] and (N −1)-dimensional partitions of

n . If N = 2, a 1-dimensional partition corresponds to a Ferrers diagram (see Definition 1.2.8)

(also known in the literature as a Young tableaux see Remark 1.2.9) made of n boxes, the

correspondence being depicted in Figure 1.

1 x x 2 x 3 x 4 x 5 x 6 x 7

x 2 y 2x y 2y 2

x 2 yx yy x 3 y

x y 3y 3 x 2 y 3

y 4 x y 4

y 5

y 6

Figure 1. The Ferrers diagram corresponding to the monomial ideal I =
(x 7, x 3 y , x 2 y 3, x y 4, y 6), whose generators define the staircase of the diagram. The

length (number of boxes) is 17.

Any finite subscheme X ⊂AN is a disjoint union of fat points. The moduli space parametris-

ing finite subschemes X ⊂AN of length n is the Hilbert scheme of points Hilbn (AN ). It con-

tains a projective subscheme Hilbn (AN )0 ⊂ Hilbn (AN ), called the punctual Hilbert scheme,

parametrising fat points supported at the origin 0 ∈AN . This scheme is known to be irreducible

of dimension n −1 in the case N = 2, by work of Briançon [8]. It is also irreducible if N = 3 and

n ≤ 11, by work of Jelisiejew–Keneshlou [42]while, it is reducible if N = 3 and n ≥ 78 by work

of Iarrobino [37]. It is remarkable that nothing about the irreducibiliy of the Hilbert scheme

is known for N = 3 and 12 ≤ n ≤ 77 while, (see [11]) the Hilbert scheme of points is always

reducible for N ≥ 4 and n ≤ 7 and reducible for N ≥ 4 and n > 7. The locus of all fat points

X ⊂AN of length n is of course given by AN ×Hilbn (AN )0.
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0.8 Cones

A cone over a scheme X is an X -scheme of the form

π: SpecOX
A → X ,

whereA =
⊕

i≥0Ai is a quasicoherent sheaf of graded OX -algebras such that the canonical

mapA0→OX is an isomorphism,A1 is coherent and generatesA overA0. Given a cone

C = SpecOX
A → X , one can construct another cone

C ⊕1= SpecOX
A [z ]→ X

where the i -th graded piece ofA [z ] is

(A [z ])i =Ai ⊕Ai−1z ⊕ · · ·⊕A1z i−1⊕A0z i .

On the other hand, the projective cone of C is defined to be the X -scheme

P (C ) =POX
A → X .

The projective completion of C , namely the projective cone

P (C ⊕1)→ X ,

contains C as a dense open subset with closed complement P (C ) ,→ P (C ⊕1), locally cut out

by the equation z = 0.

The main example to which these constructions apply, of crucial importance in Chapter 2,

is the normal cone of a closed immersion X ,→M of C-schemes, namely the cone

CX /M = SpecOX

�

⊕

i≥0

I i /I i+1

�

→ X ,

where I ⊂OM is the ideal sheaf of X ,→M .

0.9 Normalisation and order functions

Recall that a quasicompact integral scheme X is normal if for every closed point p ∈ X the

local ring OX ,p is normal (integrally closed in its field of fractions). A normalisation of X is a

pair (Y ,µ), where Y is a normal scheme and µ: Y → X is a morphism such that if µ′ : Y ′→ X

is a dominant morphism from a normal scheme Y ′, then there exists a unique morphism

θ : Y ′→ Y such that µ ◦θ =µ′.

Proposition 0.9.1 ([49, § 4.1.2, Prop. 1.22 and 1.25]). Let X be an integral scheme. Then there

exists a normalisation morphism µ: Y → X , unique up to unique isomorphism (of X -schemes).

Moreover, a morphism f : Y → X is the normalisation morphism if and only if Y is normal, and

f is birational and integral. If X is a variety, the normalisation µ: Y → X is a finite morphism.

The following two results describe the behaviour of birational morphisms with a normal

variety as a target.
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Theorem 0.9.2 (Zariski’s Main Theorem [35, Cor. 11.4]). Let f : X → Y be a birational projective

morphism of noetherian integral schemes, and assume that Y is normal. Then, for every point

y ∈ Y , the fibre f −1(y ) is connected.

Lemma 0.9.3 ([65, Tag 0AB1]). A finite (or even integral) birational morphism f : X → Y of

integral schemes with Y normal is an isomorphism.

Recall that if X is a variety and V ,→ X is a prime cycle of codimension 1, the order function

ordV : C(X )× → Z is defined as follows: one sets ordV (a ) = lengthOX ,V
(OX ,V /a · OX ,V ) for a ∈

OX ,V , and for h = a/b ∈ C(X )×, one proves easily that the definition ordV (h ) = ordV (a )−
ordV (b ) is well given. This definition generalises the more familiar notion that applies when

X is normal: in this case, the local ring (OX ,V ,mX ,V ) is a discrete valuation ring (and not just a

local integral domain), and one defines ordV (a ) to be the largest integer k such that a ∈mk
X ,V .

The two notions are related as shown in the next result.

Proposition 0.9.4 ([26, Ex. 1.2.3]). Let X be a variety, µ: Y → X the normalisation of X , and let

V ,→ X be a subvariety of codimension 1. If h ∈C(X )× =C(Y )×, then

ordV (h ) =
∑

µ: W→V

ordW (h ) · [C(W ) :C(V )],

where the sum is over all subvarieties W ,→ Y which map onto V , and [C(W ) :C(V )] denotes

the degree of the corresponding field extension.

0.10 Normalisation of blowups

Recall that if I is an ideal in a polynomial ring A =C[x1, . . . , xN ], then the Rees algebra of I is

A[I t ] = A⊕ I t ⊕ I 2t 2⊕ I 3t 3⊕ · · · ⊂ A[t ].

Since A is a domain, so is A[I t ], see [65, Tag 01OF], and therefore the blowup BlI AN is again a

variety (an integral scheme of finite type over C). If I is monomial, by the general theory of

normalisation in this setup (see e.g. [48, § II.5] for a thorough treatment), the integral closure

of A[I t ] is

A[I t ] = A⊕ I t ⊕ I 2t 2⊕ I 3t 3⊕ · · ·

where, after setting x m = x m1
1 · · · x mN

N for m = (m1, . . . , mN ) ∈NN , one defines

(0.10.1) I i =
�

x m ∈ A
�

� (x m )p ∈ I i p for some p ≥ 1
�

⊂ A.

By [57, Ex. 6.C.9], the inclusion A[I t ] ,→ A[I t ] induces an everywhere defined morphism

µI : PA[I t ]→BlI AN ,

which agrees with the normalisation morphism. In general, A[I t ] is normal if and only if

I i = I i for every i ≥ 1.

By [59, Prop. 3.1], in the case N = 2, the algebra C[x , y ][I t ] agrees with the Rees algebra

C[x , y ][I t ] of the monomial ideal I ⊂C[x , y ]. In particular the normalisation of BlI A2 is the

blowup of A2 along I . This motivates the following common terminology.

https://stacks.math.columbia.edu/tag/0AB1
https://stacks.math.columbia.edu/tag/01OF
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Definition 0.10.1. We will say that an ideal I ⊂ A is normal if its Rees algebra A[I t ] is normal.

When A =C[x , y ], we will call I the normalisation of I .

We next state a special case of [17, Prop. 1.1] suited for our purposes (the general statement

involves a polynomial ring in an arbitrary number of variables).

Proposition 0.10.2 ([17, Prop. 1.1]). Let I = (x a1 , x a2 y b2 , . . . , x as−1 y bs−1 , y bs ) ⊂ C[x , y ] be a

monomial ideal of finite colength and let QI ⊂R2 be the subset defined by

QI =ConvQ((a1, 0), (a2, b2), . . . , (as−1, bs−1), (0, bs ))+Q2
≥0

where ConvQ(p1, . . . , ps )⊂Q2 denotes the convex hull of a set of points p1, . . . , ps ∈N2 ⊂Q2. Then,

for i ̸= 0, one has

I i =
�

x a y b
�

� (a , b ) ∈ i ·QI ∩Z2
�

.

Remark 0.10.3. Proposition 0.10.2 provides a criterion to establish whether, given a monomial

ideal of finite colength I ⊂C[x , y ], the blowup variety BlI A2 is normal or not. Explicitly, if QI

is defined as in Proposition 0.10.2 and AI = { (a , b ) ∈N2 | x a y b ∈ I }, then BlI A2 is normal if

and only if

AI =QI ∩N2.

Moreover, we have the equality QI = ConvQ(AI ) and, as a consequence, if I , J ⊂ C[x , y ] are

normal ideals, then I J is normal. Indeed, by general properties of convexes (see [13, § 2.2.]),

we have

QI J ∩N2 =ConvQ(AI J )∩N2

=ConvQ(AI +A J )∩N2

= (ConvQ(AI ) +ConvQ(A J ))∩N2

= AI +A J

= AI J .

Notice that the converse in not true. For instance, setting m= (x , y ), we have

m3 =m · (x 2, y 2),

and we shall see in Example 0.10.8 that (x 2, y 2) is not normal.

Example 0.10.4. Consider the two ideals I = (x 2, y 2) and J = (x 2, y 3) in C[x , y ]. Then,

AI =
�

(a , b ) ∈N2
�

� a , b ≥ 2
	

,

A J =
�

(a , b ) ∈N2
�

� a ≥ 2, b ≥ 3
	

.

Since (1,1) ∈ (QI ∩N2)∖ AI and (1,2) ∈ (Q J ∩N2)∖ A J , the blowups BlI A2 and BlJ A2 are not

normal. The integral closures of the Rees algebras are respectively given by

C[x , y ][I t ] =C[x , y ][I t ]

C[x , y ][J t ] =C[x , y ][J t ]

where I =m2 and J = (x 2, x y 2, y 3).
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We will see many examples of normalisations of blouwps of the affine planeA2 with centre

a monomial ideal of finite colength I ⊂C[x , y ] in Sections 2.5 and 2.7.

Ferrers diagrams of ideals which have normal Rees algebras admit a useful description

that was given in [28] and we present below.

Theorem 0.10.5 ([28, Thm. 2.13]). Let I ⊂C[x , y ]be minimally generated by the n+1 monomials

(0.10.2) x a0 , x a1 y bn−1 , . . . , x ai y bn−i , . . . , x an−1 y b1 , y b0

where ai > ai+1 and bi > bi+1 for i = 0, . . . , n −2. Set an = bn = 0. If the blowup BlI A2 is normal,

then there exists an integer k such that 0≤ k ≤ n and

1. an = 0, an−1 = 1, an−2 = 2, . . . , ak = n −k ,

2. bn = 0, bn−1 = 1, bn−2 = 2, . . . , bn−k = k ,

3. bi ≤ ⌈
bi−1+bi+1

2 ⌉ for i = 1, . . . , n −k −1,

4. ai ≤ ⌈
ai−1+ai+1

2 ⌉ for i = 1, . . . , k −1.

Remark 0.10.6. If an ideal I ⊂C[x , y ], as in (0.10.2), is normal, then the boundary ∂QI of QI

is piece-wise linear, i.e.

∂QI =Q2∖QI ∩QI = s0 ∪ · · · ∪ st+1,

where Q2∖QI denotes the Euclidean closure and s0, . . . , st+1 are, possibly unbounded, seg-

ments with different slopes. Let us also denote by v0, . . . , vt the vertices of ∂QI i.e.

{vi | 0≤ i ≤ t }= { si ∩ s j | 0≤ i < j ≤ t +1} .

For instance, I = (1) if and only if t = 0 which also implies v0 = (0, 0).
Then, as a consequence of Theorem 0.10.5, up to relabeling the linear pieces and the

vertices, the following properties hold:

◦ the pieces s0 and st+1 are unbounded and respectively supported on the positive half

horizontal axis and on the positive half vertical axis,

◦ for i = 0, . . . , t , we have vi = si ∩ si+1,

◦ for i = 1, . . . , t , the segments si are bounded and supported on certain lines r1, . . . , rt ,

such that each line ri has negative slope mi and 0>mi >mi+1 for all i = 1, . . . , t −1,

◦ there is a strictly increasing sequence 0= k0 < · · ·< kt = n of positive integers such that

vi = (aki
, bn−ki

), where, as above, we set an = bn = 0.

Now, the integer k of Theorem 0.10.5, can be chosen as

k =max{ i |mi ≥−1 } .

Below we show an example of Ferrers diagram of a monomial 0-dimensional scheme whose

associated Rees algebra is normal.



CHAPTER 0. BACKGROUND MATERIAL 10

Example 0.10.7. Consider the ideal I = (x 6, x 4 y , x 2 y 2, x y 3, y 5) ⊂ C[x , y ] and QI , AI as in

Proposition 0.10.2 and Remark 0.10.3. The Ferrers diagram of I is

where the highlighted area in the above picture corresponds to QI . Then, the ideal I is normal

because AI =QI ∩N2.

Example 0.10.8. Set I = (x k , y k ) ⊂ C[x , y ], where k > 1. Then I is not normal, and the

normalisation of BlI A2 is given by Blmk A2. Moreover, as we shall see in Example 2.2.7 (but see

also [35, Ex. II.7.11]), there is a canonical isomorphism

BlmA2 Blmk A2 =BlI A2.←→∼

Composing with the normalisation morphism, one obtains a morphism

BlmA2→BlI A2,

induced of course by I ⊂ I ⊂m. An example with k = 5 is depicted inFigure 2.

Figure 2. The normalisation of the ideal I = (x 5, y 5) is m5.

Again, as in Example 0.10.7, if QI ⊂Q2 is defined as in Proposition 0.10.2, then the high-

lighted area in the above figure corresponds to QI , but this time QI ∩N2 ̸= AI .

Example 0.10.9. In general, if I = (x k , y h ), the blowup BlI A2 is canonically isomorphic (see

[21, Prop. IV-25]), over A2, to the quasiprojective surface

B =
�

((x , y ), [u : v ]) ∈A2×P1
�

� v x k = u y h
	

,→A2×P1.

In particular, for h , k > 1, the blowup BlI A2 is singular along the exceptional divisor and hence,

it is not normal.

0.11 Self-intersection inside quasiprojective surfaces

Let B =BlI A2 be the blowup of the affine plane with centre a fat point supported at the origin.

Then B contains a finite number of irreducible projective rational curves C1, . . . , Cr .
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Suppose that B is smooth. Whenever we will talk about self-intersection we will refer to

the quadratic form on
⊕

1≤i≤r ZCi induced by the map

{C1, . . . , Cr } Z

Ci C 2
i = degCi

�

OB (Ci )
�

�

Ci

�

.

← →(−)2

←[ →
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1.0 G -clusters & G -constellations

Definition 1.0.1. Let G ⊂GL(n ,C) be a finite subgroup. A G -cluster is a 0-dimensional sub-

scheme Z of An such that:

• the structure sheaf OZ is G -equivariant, i.e. the ideal IZ is invariant with respect to the

action of G on C[x1, . . . , xn ], and

• if ρreg : G → GL(C[G ]) is the regular representation, then there is an isomorphism of

representations

ϕ : H 0(Z ,OZ )→C[G ],

i.e. ϕ is an isomorphism of vector spaces such that the following diagram:

G ×H 0(Z ,OZ )

G ×C[G ]

H 0(Z ,OZ )

C[G ]

ϕidG ×ϕ

where the horizontal arrows are the G -actions, commutes.

Example 1.0.2. Consider the representation

ρ1 : Z/3Z GL(2,C)

1

�

ξ3 0

0 ξ2
3

�

.

where ξ3 is a primitive third root of 1. Then, the following are examples of Z/3Z-clusters ofA2:

Spec
�C[x , y ]
(x , y 3)

�

, Spec
�C[x , y ]
(x , y )2

�

, Spec
� C[x , y ]
(x −a , y − b )(x −ξa , y −ξ2b )(x −ξ2a , y −ξb )

�

for some (a , b ) ∈A2∖0.

Remark 1.0.3. In general, a free orbit is always a G -cluster. On the other side, the support of a

G -cluster, i.e. its reduction, is always a union of orbits of the G -action. We will see that the

G -cluster whose support is one orbit will play a central role in the theory developed.

Definition 1.0.4. We will denote by HilbG (An ) the fine moduli space of G -clusters and, by

G -Hilb(An ) the irreducible component of HilbG (An ) containing the free G -orbits.

Remark 1.0.5. The scheme Hilb-G (An ) can be constructed as a closed subscheme of the

Hilbert scheme of |G | points Hilb|G |(An ), i.e. the fine moduli space of length |G | subschemes

of the affine space. Its existence and the fact that it is quasi-projective was proven in [34].

Theorem 1.0.6 ([9, Theorem 1.2]). Let G ⊂ Sl(n ,C) be a finite subgroup where n = 2,3. Then

An/G has only Gorenstein singularities. Moreover the Hilbert–Chow morphism

Y :=G - Hilb(An )
ϵ−→An/G =: X ,

which associates to each G -cluster its support, is a crepant resolution of singularities, i.e. ωY
∼=

ϵ∗ωX . (see Definition 0.3.1)



CHAPTER 1. MODULI SPACES OF Z/kZ-CONSTELLATIONS OVER A2 14

Remark 1.0.7. The Hilbert–Chow morphism ϵmentioned in Theorem 1.0.6 is a G -equivariant

version of the usual Hilbert–Chow morphism

ϵ : Hilb|G |(An )→ Sym|G |(An ),

which associates to each 0-dimensional subscheme Z ⊂An of length n its support Supp(Z ). In

particular ϵ can be thought of as the restriction of ϵ to the G -invariant subvariety G -Hilb(An )⊂
Hilb|G |(An ).

Notice that the existence of the Hilbert–Chow morphism guarantees that G -Hilb(An ) con-

tains, for n = 2, 3, only (see Remark 1.0.3). G -cluster whose support is one G -orbit.

A natural generalisation of the concept of G -cluster is given in [15], and it is achieved

by consider coherent OAn -modules which are not necessarily the structure sheaves of 0-

dimensional subschemes of An .

Definition 1.0.8 ([15, Definition 2.1]). Let G ⊂GL(n ,C) be a finite subgroup. A G -constellation

is a coherent OAn -moduleF on An such that:

• F is G -equivariant, and

• there is an isomorphism of representations

ϕ : H 0(An ,F )→C[G ].

Remark 1.0.9. Since a G -constellationF is a coherent sheaf on the affine variety An , some-

times, by abuse of notations, we will call G -constellation its global sections H 0(F ,An ) as

well asF and, sometimes, we will treat a G -constellation as if it were a C[x1, . . . , xn ]-module,

meaning that we are working with the space of its global sections.

Definition 1.0.10. A G -constellationF is irreducible if it cannot be written as a direct sum

F = E1⊕E2,

where E1,E2 are proper G -subsheaves, and it is reducible otherwise.

Example 1.0.11. The structure sheaf of a G -cluster is a G -constellation. In particular, a G -

cluster is irreducible if and only its support is one G -orbit (see Remark 1.0.3).

Remark 1.0.12. If we think of a G -constellation as its global sections, a G -constellation F =
H 0(F ,An ) is irreducible if it cannot be written as a direct sum

F = E1⊕E2,

where E1, E2 are proper G -equivariant C[x1, . . . , xn ]-submodules.

Remark 1.0.13. The G -equivariance hypothesis implies that the support of a G -constellation

F is a union of G -orbits. WhenF is irreducible, then its support must be a G -orbit. Moreover,

for dimensional reasons, the only constellations supported on a free orbit Z are isomorphic to

the structure sheaf OZ .
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Remark 1.0.14. Recall that (see, for example, [27, chapters 1 and 2]), given a finite group G

and the set of isomorphism classes of its irreducible representations

Irr(G ) = {Irreducible representations}/iso,

there is a ring isomorphism

Ψ : R (G )
∼−→

⊕

ρ∈Irr(G )

Zρ

where (R (G ),⊕) is the Grothendieck group of isomorphism classes of representations of G , and

the ring structure (on both sides) is induced by tensor product ⊗ of representations. Moreover

Irr(G ) = {ρ1, . . . ,ρs } is finite, and we have the correspondence:

R (G )
s
⊕

i=1
Zρi

C[G ] (dimρ1, . . . , dimρs ).

← →Ψ

←[ →

Following the ideas in [45], the above mentioned properties allow one to introduce a notion

of stability on the set of G -constellations. Given a finite subgroup G ⊂ Sl(n ,C) (where n = 2, 3),

the space of stability conditions for G -constellations is

Θ = {θ ∈HomZ(R (G ),Q) | θ (C[G ]) = 0 }

Definition 1.0.15. Let θ ∈ Θ be a stability condition. A G -constellation F is said to be θ -

(semi)stable if, for any proper G -equivariant subsheaf 0⊊ E ⊊F , we have

θ (H 0(An ,E )) >
(≥)

0.

A stability condition θ is generic if the notion of θ -semistability is equivalent to the notion of

θ -stability. Finally, we will denote by Θgen ⊂Θ the subset of generic stability conditions.

Remark 1.0.16. IfF is reducible, then it is not θ -stable for any generic stability condition

θ ∈Θgen. Indeed, suppose thatF = E1⊕E2 for some proper G -subsheaves E1,E2 ⊊F . Then, if

F had been θ -stable for some θ ∈Θgen, we would have














0= θ (F ) = θ (E1) +θ (E2),

θ (E1)> 0,

θ (E2)> 0,

which yields a contradiction.

Since, for our purpose, we will be interested in irreducible G -constellations, whenever not

specified a G -constellation will always be irreducible.

Remark 1.0.17. If Z ⊂ An is a free orbit, then OZ does not admit any proper G -subsheaf.

Indeed, given a nonzero element s ∈ OZ , the collection
�

g · s
�

� g ∈G
	

generates OZ . As a

consequence, OZ is θ -stable for all θ ∈Θ.
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Example 1.0.18. Let us adopt the notation in Example 1.0.2. Then, the C[x , y ]-modules

F1 =
(x , y )
(x 2, y 2)

, F2 =
(x )
(x , y )3

, F3 =
(x , y )2

(x , y )3

define three Z/3Z-constellations. Their Z/3Z-equivariant proper submodules are

(x 2)
(x ,y )3

(x y )
(x ,y )3

(y 2)
(x ,y )3

(x )
(x 2,y 2)

(y )
(x 2,y 2)

(x y )
(x 2,y 2)

(x 2)
(x ,y )3

(x y )
(x ,y )3

(x 2,x y )
(x ,y )3

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

(1, 1, 0)

(1, 0, 1)

(1, 0, 0)

(0, 0, 1)

(1, 0, 0)

(1, 0, 1)

F1

F2

F3

R (G )G -submodules

In the last column are listed the correspondent elements in R (G ) (see Remark 1.0.13). As a

consequence, if θ1 = (2,−1,−1) and θ1 = (1,−2,1) are two stability conditions, then F1 (resp.

F2) is θ1-stable (resp. θ2-stable) and it is not θ2-stable (resp. θ1-stable). Finally, F3, which

is reducible, is not θi -stable for i = 1,2. One can also show that both θ1 and θ2 are generic

conditions.

Definition 1.0.19. Let θ ∈Θgen be a generic stability condition. We callMθ the irreducible

component of the (fine) moduli space of θ -stable G -constellations containing the free orbits.

In this context, we will denote byUθ the universal family of θ -stable G -constellations,

namelyUθ ∈Ob Coh(Mθ ×An ), and byRθ the tautological bundleRθ := (πMθ
)∗Uθ .

Remark 1.0.20. The tautological bundleRθ is the vector bundle of rank |G |whose fibre, over

the point [F ] ∈Mθ , is the complex vector space H 0(A2,F ).

The theorem below brings together results from [45, 15, 9].

Theorem 1.0.21. The following results are true for n = 2, 3.

• The subset Θgen ⊂Θ of generic parameters is open and dense. It is the disjoint union of

finitely many open convex polyhedral cones in Θ called chambers.

• For generic θ ∈Θgen, the moduli spaceMθ exists and it depends only upon the chamber

C ⊂Θgen containing θ , so we writeMC ,UC andRC in place ofMθ ,Uθ , andRθ for any
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θ ∈C . Moreover, the Hilbert–Chow morphism, which associates to each G -constellation

F its support Supp(F ), ϵ :MC →An/G , is a crepant resolution.

• (Craw–Ishii Theorem) Given a finite abelian subgroup G ⊂ SL(n ,C), suppose Y
ϵ−→An/G

is a projective crepant resolution. Then Y ∼=MC for some chamber C ⊂Θ and ϵ = ϵC is

the Hilbert-Chow morphism.

• There exists a chamber CG ⊂Θgen such thatMCG
=G -Hilb(An ).

Remark 1.0.22. As expected by Theorem 1.0.6 and Remarks 1.0.3 and 1.0.16, MCG
∼= G -

Hilb(An ) parametrises irreducible G -clusters.

Remark 1.0.23. Let UC =MC ∖Exc(ϵC ) be the complement of the exceptional locus of the

Hilbert-Chow morphism. Then, Remarks 1.0.13 and 1.0.17 imply, together with the third point

of Theorem 1.0.21, that for any two chambers C , C ′ ⊂Θgen we have a canonical isomorphism

of families over An/G -schemes

UC |UC ×An

UC ×An

UC ′ |UC ′ ×An

UC ′ ×An ,

∼=

i.e. there exists a unique isomorphism ϕC : UC →UC ′ such that the diagram

UC UC ′

An/G

← →
ϕ

←

→ϵC

←→

ϵC ′

commutes andUC |UC ×An
∼= (ϕ× idAn )∗UC ′ |UC ′ ×An .

In particular, for any C , UC parametrizes the free orbits of the G -action as the complement

of the singular locus of An/G does.

We conclude this section with the statement of the Craw-Ishii conjecture.

Conjecture 1.0.24. Let Y → X be a crepant resolution of a quotient singularity X =A3/G , for

G < Sl(3,C) finite. Then, there exists a generic stability condition θ ∈Θgen such thatMθ and Y

are isomorphic over X .
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1.1 The two-dimensional abelian case

In this section we will fix some notation that we will use throughout the rest of this chapter

and will give a very brief description of the singularities of type A|G |−1 and of their respective

resolutions. Moreover, we will give an explicit construction of its partial resolutions as blowups

with centre some nonreduced ideal.

Throughout the section, we will consider a finite abelian subgroup G ⊂ SL(n ,C).

1.1.1 The action of G

Whenever G ⊂ SL(n ,C) is a finite abelian subgroup, it is well known that its irreducible rep-

resentations are 1-dimensional and that there is a bijection between the group G and Irr(G ).
Moreover, the map Ψ in Remark 1.0.14 is such that

R (G )
⊕

ρ∈Irr(G )
Zρ

C[G ] (1, . . . , 1).

←→Ψ

←[ →

In particular, in dimension 2, it is well known that all finite abelian subgroups G ⊂ Sl(2,C)
are cyclic. Moreover, for any k ≥ 1, there is only one conjugacy class of abelian subgroups

of SL(2,C) isomorphic to Z/kZ. In what follows we will choose, as representative of such

conjugacy class,

(1.1.1) Z/kZ∼=G = 〈gk =

�

ξ−1
k 0

0 ξk

�

〉 ⊂ SL(2,C)

where ξk is a (fixed) primitive k -th root of unity.

We will adopt the following notation for the irreducible representations of G :

(1.1.2) Irr(G ) =

(

ρi : Z/kZ C∗
gk ξi

k

�

�

�

�

�

i = 0, . . . , k −1

)

.

Sometimes, we will identify Irr(G )with the set {0, . . . , k −1} according to the bijection ρ j 7→ j .

Notice that one may also identify (Irr(G ),⊗) with the abelian group (Z/kZ,+), but, in what

follows, we will mostly deal with Irr(G ) as a set of indices, hence we will ignore the natural

group structure on it.

1.1.2 The quotient singularityA2/G and its resolution

The singularity obtained in this case is called Ak−1 (or Kleinian or DuVal) singularity, i.e.

Ak−1 :=A2/G .

This is a rational double point and it has been intensively studied for decades (see for instance

[19]). It is well known that it has a unique minimal, in fact crepant, resolution Y
ϵ−→ Ak−1 whose

exceptional divisor is a chain of k −1 smooth (−2)-rational projective curves.
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As a consequence of Theorem 1.0.21 and of the uniqueness of the minimal model of a

surface, for any chamber C , there is an isomorphism of varieties ϕC :MC
∼−→ Y such that the

diagram

MC Y

Ak−1

← →
ϕC

←

→ϵC

←→

ϵ

commutes. What changes between two different chambers C , C ′ is that they have different

universal familiesUC ,UC ′ ∈Ob Coh(Y ×A2).
Let us describe in details the minimal resolution and the partial ones. The varieties A2,

A2/G andMC are toric (see for example [13, Chapter 10] or [25, Chapter 2]) and we can rewrite

the diagram

A2

MC A2/G
←→ π

←→
ϵC

in terms of fans as follows:

MC ...

(0, 1)

(k ,−k +1)

(2,−1)

(1, 0)

A2/G

(0, 1)

(k ,−k +1).

A2

(1, 0)

(0, 1)

ϵC

π

In particular,MC is covered by the k toric charts Uj
∼= A2, for j = 1, . . . , k , associated to the

maximal cones of the chosen fan forMC showed above.

Let us identify A2/G with the subvariety of A3

A2/G =
�

(α,β ,γ) ∈A3
�

�αβ −γk = 0
	

and let us put (toric) coordinates a j , c j on each Uj for j = 1, . . . , k . Then, we can encode the

diagram above into the following k diagrams

(1.1.3) Uj A2/G

A2

π

ϵ j

(a j , c j ) (a k− j+1
j c

k− j
j , a

j−1
j c

j
j , a j c j )

(x k , y k , x y )

(x , y )
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for j = 1, . . . , k . In particular, we obtain some relations between the coordinates x , y on A2

and the coordinates a j , c j on Uj , namely

(1.1.4)
a j = x j y j−k ,

c j = x 1− j y k− j+1.

Formally, these are relations between rational functions defined on A2 ×
A2/G

Uj .

Remark 1.1.1. The toric points of each of the k −1 irreducible components of the exceptional

divisor of the crepant resolution are origins of two consecutive charts, i.e. Uj and Uj+1 for

some j = 1, . . . , k . Therefore, we can order the collection of the components of the exceptional

divisor by saying that the j -th component is the curve whose toric points are the origins of Uj

and Uj+1.

1.1.3 The partial resolutions of the Ak−1 singularities

Let X =
�

x y − z k = 0
	 ∼= A2/(Z/kZ) be a singularity of type Ak−1. It is an easy exercise in

algebraic (or toric) geometry to show that the blowup X of X at the origin gives a partial

resolution

Y X X ,←→
f ←→

g

with the property that the strict transform of the exceptional locus of g via f consists of the

first and the last exceptional curves (see Remark 1.1.1) of the resolution ϵ. In paricular, X has

an isolated singularity of type Ak−3. Similarly one can show that the blowups with centre the

ideals (x ) and (y ) give partial resolutions which pop up the first and last curve respectively

and which have an isolated singularity of type Ak−2.

We show now how to compute all the other crepant resolutions. Consider the ideals

I j ⊂C[X ], for j = 1, . . . , k −1, defined by

I j = (x , z j ) = (y , z k− j ) for all j = 1, . . . , k −1,

where the equality follows from

X =

¨

det

�

x z j

z k− j y

�

= 0

«

for all j = 1, . . . , k −1.

Then, there is a partial resolution

Y X j =BlI j
X X .←→

f j ←→
g j

More precisely, this is the partial resolution with the property that the strict transform via f j

of the exceptional locus of g j is the j -th curve (see Remark 1.1.1) of the exceptional locus of

g j ◦ f j . This can be understood by looking at the equations of the blowup:

(1.1.5) X j =
�

u1 y − z k− j u0 = x u0− z j u1 = 0
	

⊂A3×P1.

Indeed, form Equation (1.1.5) it is clear that X j has an irreducible (rational) exceptional divisor

over which lie the two singularities of X j . These singularities are respectively of type A j−1 and

Ak− j−1, which implies that X j is the required partial resolution.
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All the other crepant resolutions have of the form (see Lemma 0.2.1)

Y X j =Bl k
∏

j=1
Ii j

X X ,←→
fi1,...,ik ←→

g i1,...,ik

for some 1≤ i1 < . . .< ik ≤ k −1. Each of them can be defined as the partial resolution with the

property that the strict transform via fi1,...,ik
of the exceptional locus of g i1,...,ik

is Ci1
∪ · · · ∪Cik

where we have denoted by Ci the i -the curve in the exceptional locus Exc(ϵ) of the crepant

resolution of X .
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1.2 Toric G -constellations

This section is devoted to the study of toric G -constellations, i.e. those G -constellations which,

in addition to being G -sheaves, are also T2-sheaves. As it usually happens when dealing

with T2-modules, we will see that the C[x , y ]-module structure of a toric G -constellation is

fully described in terms of combinatorial objects, which in this case are called skew Ferrers

diagrams.

This way of proceeding in the description of a T2-module is not new, and it is actually

adopted very often in the literature; for example in the study of monomial ideals (see [8]) or,

more generally, in the study of T2-modules of finite length (see [51]).

Although many statements can be generalized to higher dimension, from now on we will

focus on the 2-dimensional case.

1.2.1 The torus action

Recall that A2 is a toric variety via the standard torus action:

T2×A2 A2

((σ1,σ2), (x , y )) (σ1 · x ,σ2 · y ).

← →

←[ →

Notice that, under our assumptions, G is a finite subgroup of the torus T2. Hence, the

action of T2 commutes with the action of the finite abelian (diagonal) subgroup G ⊂T2.

This implies that, given a θ -stable G -constellation F , the pullback σ∗F is a θ -stable

G -constellation. Indeed, σ∗ induces an isomorphism between the global sections of σ∗F
andF and hence, dim H 0(A2,σ∗F ) = k . Moreover, σ∗F is still a G -sheaf if we define (see

Chapter 0), ∀g ∈G , the morphisms λσ
∗F

g :σ∗F → g ∗σ∗F as

λσ
∗F

g =σ∗λFg .

Such morphisms are well defined because σ∗ and g ∗ commute, i.e. g ∗σ∗F ∼=σ∗g ∗F for all

(g ,σ) ∈G ×T2. Finally, we have to check thatσ∗F is θ -stable. This follows from the fact that

both the groups G ⊂T2 act diagonally. As a consequence, if E ⊂F is a proper G -subsheaf and

H 0(A2,E ) =
r
⊕

j=1

ρi j

as representations (see Equation (1.1.2) for the definition of ρi ), thenσ∗E ⊂σ∗F is a proper

G -subsheaf and

H 0(A2,σ∗E ) =
r
⊕

j=1

ρi j

as representations.

Definition 1.2.1. As explained above, the torus T2 acts onMC for any chamber C . We will say

that a G -constellationF is toric if it corresponds to a torus fixed point.

Remark 1.2.2. A G -constellationF is toric if and only if it is a T2-sheaf. Indeed,F is a torus

fixed points if and only if, for all σ ∈ T2 there are isomorphisms ψσ :F → σ∗F and these

isomorphisms provide the structure of T2-sheaf onF (see Chapter 0).
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Definition 1.2.3. We will say that a G -constellationF is nilpotent if the endomorphisms x ·
and y · of the C[x , y ]-module H 0(A2,F ) are nilpotent.

Remark 1.2.4. A G -constellationF is supported on the origin 0 ∈A2 if and only if it is nilpotent.

This follows from the relation between the annihilator of a C[x , y ]-module and the support

of the sheaf associated to it (see [20, Section 2.2]). Moreover, Theorem 1.0.21 implies that

nilpotent C -stable G -constellations correspond to points of the exceptional locus of the

crepant resolutionMC .

Remark 1.2.5. Given a G -constellation F = H 0(A2,F ), we can compare its structures of

representation and of C[x , y ]-module. Looking at the induced action of G on C[x , y ], it turns

out that, if s ∈ρi via the isomorphism F ∼=C[G ] then:

x · s ∈ρi+1,

and,

y · s ∈ρi−1.

Proposition 1.2.6. If F =H 0(A2,F ) is a nilpotent G -constellation then the endomorphism x y ·
is the zero endomorphism.

Proof. The G -constellation F is a k -dimensional C-vector space. Let us pick a basis

{v0, . . . , vk−1}

of F such that, for all i = 0, . . . , k − 1, vi ∈ ρi under the isomorphism F ∼= C[G ]. As in Re-

mark 1.2.5, for all i = 0, . . . , k −1, we have:

x · vi ∈ρi+1,

and,

y · vi ∈ρi−1

where the indices are thought modulo k . In other words,

x · vi ∈ Span(vi+1) and y · vi ∈ Span(vi−1).

Therefore, we get:

x y · vi ∈ Span(vi ), ∀i = 0, . . . , k −1

i.e.

x y · vi =αi vi , with αi ∈C, ∀i = 0, . . . , k −1.

Now, the nilpotency hypothesis implies that αi = 0 for all i = 0, . . . , k −1.

Remark 1.2.7. If a G -constellation F =H 0(A2,F ) is toric, then, it is also nilpotent. Indeed,

following the same logic as in the proof of Proposition 1.2.6, we have

x k · vi =αi vi , with αi ∈C, ∀i = 0, . . . , k −1,

but torus equivariancy implies αi = 0 for all i = 0, . . . , k −1.
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1.2.2 Skew Ferrers diagrams and G -stairs

The advantage of working with toric G -constellations is that their spaces of global sections can

be described in terms of monomial ideals whose data are described by mean of combinatorial

objects.

We can associate, to each element of the natural planeN2, two labels: namely a monomial

and an irreducible representation. We achieve this by saying that a polynomial p ∈C[x , y ]
belongs to an irreducible representation ρi if

∀g ∈G , g ·p =ρi (g )p

i.e. p is an eigenfunction for the linear map g ·with the complex number ρi (g ) as eigenvector.

In particular, with the notations in Section 1.1.1, the monomial x i y j belongs to the irreducible

representation ρi− j of the abelian group G , where the index is tought modulo k . According to

this association, we can define the representation tableau TG as

TG =
�

(i , j , t ) ∈N2× Irr(G )
�

� i − j ≡ t ( mod k )
	

⊂N2× Irr(G ).

N

N

· · ·

...

0 1

· · ·1 x x kx k−1

x k−1 y

0k −1

x y x k yy

k −1 0

· · ·
k −2 k −1

y k−1 x y k−1 x k y k−1(x y )k−1

...
...

· · · ...
...

1 2

· · ·
0 1

0 1 · · · k −1 k k +1

0

1

...

k −1

k

Figure 1.1. The representation tableau TG .

Notice that the labeling with the representation is superfluous because the first projection

πN2 :TG →N2

is a bijection. In any case, this notation is useful to keep in mind that we are dealing with the

representation structure as well as with the module structure.

In summary, the representation tableau has the property that

(1.2.1)
moving to the right “increases" the irreducible representation by 1 ( mod k )

moving up “decreases" the irreducible representation by 1 ( mod k ).

Definition 1.2.8. A Ferrers diagram (Fd) is a subset A of the natural plane N2 such that

(N2∖A) +N2
+ ⊂ (N

2∖A)

i.e. there exist s ≥ 0 and t0 ≥ · · · ≥ ts ≥ 0 such that

A =
�

(i , j )
�

� i = 0, . . . , s and j = 0, . . . , ti

	

.
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Remark 1.2.9. In the literature there is some ambiguity about the name to be given to such

diagrams. Indeed, sometimes, they are also called Young tableaux and, by Ferrers diagrams,

something else is meant (for some different notations, see for example [27, 1]). In any case, we

will adopt the notation in [16].

Pictorially, we see s consecutive columns of weakly decreasing heights. An example is

depicted in Figure 1.2.

N

N

Figure 1.2. An example of Fd where s = 3, t0 = 3, t1 = 2, t2 = 2, t3 = 0.

Remark 1.2.10. We briefly recall that, starting from a Ferrers diagram A, we can build a torus-

invariant 0-dimensional subscheme Z of A2. Indeed, if B =N2 ∖ A is the complement of A,

then

IZ =
�

x b1 y b2
�

� (b1, b2) ∈ B
	

is the ideal of the above mentioned subscheme Z ⊂ A2. In particular, the C[x , y ]-module

structure of H 0(A2,OZ ) = C[x , y ]/IZ is encoded in the Fd, by saying that a box, labeled by

the monomial m ∈C[x , y ], corresponds to the 1-dimensional vector subspace of H 0(A2,OZ )
generated by m , and

(1.2.2)
moving to the right in the Fd is the multiplication by x

moving up in the Fd is the multiplication by y .

Definition 1.2.11. We will call skew Ferrers diagram (sFd) the set theoretic difference of two

Ferrers diagrams.

Moreover, we will say that a sFd Γ is connected if, for any decomposition

Γ = Γ1 ∪ Γ2

as disjoint union, there are at least a box in Γ1 and a box in Γ2 which share an edge.

Lemma 1.2.12. A skew Ferrers diagram Γ encodes the data of a torus-equivariant C[x , y ]-
module MΓ .

Proof. Similarly as we did in Remark 1.2.10, we associate, to each Ferrers diagram A the ideal

IA =
��

x b1 y b2 ∈C[x , y ]
�

� (b1, b2) ∈N2∖A
	�

.

Suppose that Γ = A1∖A2 is the difference of two Ferrers diagrams A1, A2. Then we can define

the torus-equivariant C[x , y ]-module

MΓ = IA2
/IA2
∩ IA1

= IA2
/IA2∪A1

.
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The fact that MΓ does not depend on the decomposition Γ = A1∖A2 follows noticing that,

if we pick another decomposition Γ = A′1∖A′2, then the isomorphism of C-vector spaces

IA2
/IA2
∩ IA1

→ IA′2
/IA′2
∩ IA′1

,

which associates the class xαy β + IA2
∩ IA1

to the class xαy β + IA′2
∩ IA′1

, is an isomorphism of

C[x , y ]-modules.

Now, instead of focusing just on subsets of the natural plane N2, we will introduce more

structure by looking at subsets of the representation tableau.

In some instances, we will need to work with abstract sFd’s obtained forgetting about the

monomials.

Definition 1.2.13. We will call G -sFd a subset A ⊂ TG of the representation tableau whose

image πN2 (A), under the first projection

πN2 :TG →N2,

is a sFd.

An abstract G -sFd is a diagram Γ made of boxes labeled by the irreducible representations

of G that can be embedded into the representation tableau as a G -sFd.

Example 1.2.14. Consider the action Z/3Z↶A2. In Figure 1.3 are shown an abstract G -sFd

and two of its possible realisations as G -sFd.

1

0

2

2

1

0

1

0

21

0

2

y x y

x y 2y 2

y 3

x

1

0

21

0

2

x 4 y 2 x 5 y 2

x 5 y 3x 4 y 3

x 4 y 4

x 5 y

Figure 1.3. An abstract Z/3Z-sFd and two of its possible realisations as Z/3Z-sFd.

On the other hand, the diagram in Figure 1.4 is not an abstract G -sFd because it does not

satisfy the rules (1.2.1) and (1.2.2).

0 2

2

Figure 1.4.

Remark 1.2.15. Given any subset Ξ of the representation tableau and any monomial xαy β

we will denote by xαy β ·Ξ the subset of the representation tableau obtained by translating

Ξ α steps to the right and β steps up. Notice that this is compatible with the association

N2↔{monomials in two variables} as explained in Remark 1.2.10.
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Lemma 1.2.16. If F is a toric G -constellation then there exists a basis {v0, . . . , vk−1} of F =
H 0(A2,F ) such that

1. for all i = 0, . . . , k −1, vi ∈ρi ,

2. for all i = 0, . . . , k −1, vi are semi-invariant functions with respect some character χi of

T2, i.e. (a , b ) · vi =χi (a , b )vi for all (a , b ) ∈T2,

3. for all i = 0, . . . , k −1,
(

x · vi ∈ {vi+1, 0},

y · vi ∈ {vi−1, 0}.

Proof. We can always pick a basis {ev0, . . . , evk−1} which satisfies (1) and (2). Moreover, it follows

from Remark 1.2.5 that:
(

x · evi ∈ Span(evi+1),

y · evi ∈ Span(evi−1),

where the indices are thought modulo k . The fact that F is toric implies that there are no

“cycles", i.e. there are no 1< s < k and







(i j , k j , h j ,σ j ) ∈ Irr(G )×N2×C∗

�

�

�

�

�

�

�

j = 1, . . . , s ,

i j ̸= i j ′ for j ̸= j ′,

k j +h j+1 > 0







where the indices are thought modulo s , such that

(1.2.3)



































(x ·)k1
evi1

=σ1(y ·)h2
evi2

,

(x ·)k2
evi2

=σ2(y ·)h3
evi3

,
...

(x ·)ks−1
evis−1

=σs−1(y ·)hs
evis

,

(x ·)ks
evis

=σs (y ·)h1
evi1

.

Indeed, x and y are semi-invariant functions with respect to the characters

T2 C∗

(a , b ) a

←→
λx

←[ →

and

T2 C∗

(a , b ) b

←→
λy

←[ →

of the torus T2. Then, if we act on both sides of the Equations 1.2.3 with some (a , b ) ∈T2, we

get:
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(1.2.4)



































λx (a , b )k1χi1
(a , b )(x ·)k1

evi1
=σ1λy (a , b )h2χi2

(a , b )(y ·)h2
evi2

,

λx (a , b )k2χi2
(a , b )(x ·)k2

evi2
=σ2λy (a , b )h3χi3

(a , b )(y ·)h3
evi3

,
...

λx (a , b )ks−1χis−1
(a , b )(x ·)ks−1

evis−1
=σs−1λy (a , b )hsχis

(a , b )(y ·)hs
evis

,

λx (a , b )ksχis
(a , b )(x ·)ks

evis
=σsλy (a , b )h1χi1

(a , b )(y ·)h1
evi1

,

Now, the System 1.2.4 is equivalent to:



































a k1χi1
(a , b ) = b h2χi2

(a , b ),

a k2χi2
(a , b ) = b h3χi3

(a , b ),
...

a ks−1χis−1
(a , b ) = b hsχis

(a , b ),

a ksχis
(a , b ) = b h1χi1

(a , b ),

which is equivalent to

(1.2.5) a k1+···+ks = b h1+···+hs ∀(a , b ) ∈T2.

Finally, the only solution of Equation (1.2.5) is

k1 = · · ·= ks = h1 = · · ·= hs = 0,

which contradicts the hypothesis ki +hi+1 > 0 for all i = 1, . . . , s .

We are now ready to build the requested basis. Let {w1, . . . , wℓ} ⊂ {ev0, . . . , evk−1} be a minimal

set of generators of the C[x , y ]-module F , i.e. the set

�

w j +m · F ∈ F /m · F
�

� j = 1, . . . ,ℓ
	

is a basis of theC-vector space F /m ·F . Let us also denote by Fj , for j = 1, . . . ,ℓ, the submodule

generated by w j . We start by taking, for all j = 1, . . . ,ℓ, as basis of Fj the set

B j =
�

xαy βw j

�

�α ·β = 0
	

.

The problem is that in general the union of all B j ’s is not a basis of F because there can be

some relations xαwi =µy βw j for i ̸= j and µ ∈C∗∖1. The fact that there are no cycles implies

that we can re-scale all the elements in each B j obtaining new B j so that
⋃

j
B j is a basis of F

that verifies properties (1), (2), (3).

Proposition 1.2.17. Given a, possibly reducible, toric G -constellation F =H 0(A2,F ), there is

(at least) one G -sFd whose associated C[x , y ]-module is a G -constellation isomorphic to F .

Remark 1.2.18. If we find one G -sFd with the required property, then there are infinitely many

of them. Indeed, a special property of the representation tableau is that translations enjoy

some periodicity properties.

Let Γ be a G -sFd, then:
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1. multiplication by x has period k , i.e there is an isomorphism of C[x , y ]-modules

MΓ
∼−→Mx k ·Γ

which induces an isomorphism of representations between MΓ and Mx k ·Γ ;

2. multiplication by y has period k , i.e there is an isomorphism of C[x , y ]-modules

MΓ
∼−→M y k ·Γ

which induces an isomorphism of representations between MΓ and M y k ·Γ ;

3. multiplication by x y is an isomorphism, i.e there is an isomorphism ofC[x , y ]-modules

MΓ
∼−→Mx y ·Γ

which induces an isomorphism of representations between MΓ and Mx y ·Γ .

In particular, all these G -sFd’s correspond to the same abstract G -sFd.

Proof. ( of Proposition 1.2.17 ). Let {v0, . . . , vk−1} be a C-basis of F with the properties listed in

Lemma 1.2.16, and let {w j = vi j
| j = 1, . . . , s } be a minimal set of generators of F as a C[x , y ]-

module (see the proof of Lemma 1.2.16). Denote by Fj , for j = 1, . . . , s , the C[x , y ]-submodule

of F generated by w j . We can represent each Fj by using diagrams of the form shown in

Figure 1.5,

w j vi j+1 vi j+2 · · · vi j+k j

vi j−1

vi j−2

...

vi j−h j

Figure 1.5.

where the integers k j and h j are defined by

k j =max
�

α
�

� (x ·)αw j ̸= 0
	

and

h j =max
�

α
�

� (y ·)αw j ̸= 0
	

,

and they are well defined because any toric G -constellation is nilpotent by Remark 1.2.7.

TheC[x , y ]-module structure of Fj is encoded in the fact that the multiplication by x (resp.

y ) sends the generator of a box (i.e., the generator of the corresponding vector space) to the

generator of the box on the left (resp. above). If there is no box on the left (resp. above) this

means that the multiplication by x (resp. y ) is zero.
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Now, we have to glue these diagrams to form the required G -sFd. We will glue them

along boxes with the same labels. First, notice that, if, for some j ̸= j ′ and r, t ≥ 1, we have

(x ·)r w j = (x ·)t w j ′ , i.e. i j + r = i j ′ + t modulo k , then

(x ·)r w j = (x ·)t w j ′ = 0.

Indeed, if r < t (the case r ≥ t is analogous) then, a representation argument (see Proposi-

tion 1.2.6) tells us that w j = (x ·)t−r w j ′ which, whenever (x ·)r wi ̸= 0, contradicts the minimal-

ity of the generating set {w1, . . . , ws }. Analogously, if, for some j ̸= j ′ and r, t ≥ 1, we have

(y ·)r w j = (y ·)t w j ′ , then (y ·)r w j = 0.

Now we show that, if, for some j ̸= j ′ and r, t ≥ 1, we have (x ·)r w j = (y ·)t w j ′ , then r = k j

and t = h j ′ . Suppose, by contradiction, that there exists 1≤ r < k j such that (x ·)r w j = (y ·)t w j ′

(the case 1≤ t < h j ′ is similar). In particular, the minimality assumption implies t ≥ 1. Since

r < k j , by definition of k j , we have (x ·)r+1wi ̸= 0. Therefore, we get

0 ̸= (x ·)r+1w j = x · ((x ·)r w j ) = x · y t ·w j ′ = (x y ) · y t−1 ·w j ′ = 0

which gives a contradiction.

The last thing to be checked is that there are no “cycles". Explicitly, suppose that, up to

reordering the v ′i s , and consequently the w ′i s , we already glued ℓ diagrams, as above, of the

form depicted in Fig. 1.5 to a diagram of the form shown in Figure 1.6,

· · ·

...

...

...

· · ·

...

w1

w2

wℓ−1

wℓ

x kℓwℓ

y h1 w1

y h2 w2=x k1 w1

y hℓwℓ=x kℓ−1 wℓ−1

· · ·

· · ·

...

Figure 1.6.

we want to show that there is no gluing (x ·)kℓwℓ =σ(y ·)h1 w1 for someσ ∈C∗, i.e. no gluing of

the first and the last boxes of the above diagram. The presence of this cycle would translate
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into the following system of equalities



































(x ·)k1 w1 = (y ·)h2 w2,

(x ·)k2 w2 = (y ·)h3 w3,
...

(x ·)kℓ−1 wℓ−1 = (y ·)hℓwℓ,

(x ·)kℓwℓ =σ(y ·)h1 w1,

which cannot be verified by any toric G -constellation as explained in the proof of Lemma 1.2.16.

So far we have proven that each connected component of the required G -sFd has the shape

depicted in Figure 1.7.

· · ·

...

...

...

· · ·

...

· · ·

· · ·

...

Figure 1.7.

Moreover, if we forget about the reordering, each box will contain a label vi whose index

increases by one when moving to the right or downward in the diagram. Since we have chosen

vi ∈ρi for i = 0, . . . , k −1, this diagram fits in the representation tableau (see Section 1.2.2), i.e.

it is an abstract G -sFd. After performing all possible gluings, we obtain a number of abstract

G -sFd’s A1, . . . , Am whose shape is drawn in Figure 1.7.

The last thing to do is to show that we can realize A1, . . . , Am as subsets Γ1, . . . ,Γm of the

representation tableau to get a G -sFd, i.e. in such a way that

πN2

� m
⋃

i=1

Γi

�

is a sFd. This can be done in many ways and we explain one possible way to proceed.

We start by realizing A1, . . . , Am as disjoint G -sFd’s Γ1, . . . ,Γm . This can always be done

because, as we observed, A1, . . . , Am are abstract G -sFd’s and, from any choice of realisations
eΓ1, . . . ,eΓm of them as non-necessarily disjoint G -sFd’s, we can obtain disjoint Γ1, . . . ,Γm by

performing the translations described in Remark 1.2.18.

At this point, we have m disjoint G -sFd’s as described in Figure 1.8,



CHAPTER 1. MODULI SPACES OF Z/kZ-CONSTELLATIONS OVER A2 32

· · ·

...

...

...

· · ·

...

· · ·

· · ·

...

· · ·

...

...

...

· · ·

...

· · ·

· · ·

...

· · ·

...

...

...

· · ·

...

· · ·

· · ·

...

· · ·
x α2 y β2x α1 y β1

x γ2 y δ2 x γm y δm

Γ1 Γ2 Γm

Figure 1.8.

where just the labels of the boxes we are interested in are shown. The problem is that, in general,

the union
m
⋃

i=1
Γi is not a G -sFd, i.e. πN2

�

m
⋃

i=1
Γi

�

is not a sFd. In order to solve this problem, we

have to perform some translations. The required G -sFd is

Γ =
m
⋃

i=1

Γ i ,

where

Γ i = x
k

i−1
∑

j=1
α j

y
k

m
∑

j=1+i
δ j

· Γi for i = 1, . . . , m .

The proof that Γ is a G -sFd is now an easy check.

As a byproduct of the proof, we also get that any G -sFd associated to an irreducible toric

G -constellation has a particular shape.

Definition 1.2.19. We will say that a a connected G -sFd Γ is a stair if

(m , n ) ∈πN2 (Γ )⇒ (m +1, n +1), (m −1, n −1) /∈πN2 (Γ ).

Moreover,

• we will call G -stair a stair made of k boxes,

• we will call abstract (G -)stair an abstract G -sFd whose realisation in the representation

tableau is a (G -)stair,

• given a stair Γ we will call (anti)generators of Γ the boxes positioned in the (top) lower

corners of Γ (see Figure 1.9),

• we will call substair any (even not connected) subset of a stair.
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· · ·

...

...

...

· · ·

...

· · ·

· · ·

...

antigenerators

generators

Figure 1.9. Generators and antigenerators of a stair.

Remark 1.2.20. IfF is any toric G -constellation, and ΓF is any G -sFd associated toF , then

ΓF is connected, i.e. it is a G -stair, if and only ifF is irreducible.

In this case we will refer to the upper left box as the first box and we will refer to the lower

right box as the last box. In this a way, we provide of an order the boxes of a G -stair and,

consequently, we provide of an order also the irreducible representations of G .

Remark 1.2.21. The set of generators of a stair Γ corresponds to a minimal set of generators of

the C[x , y ]-module MΓ associated to Γ , i.e. m1, . . . , ms ∈MΓ such that

{mi +m ·MΓ ∈MΓ /m ·MΓ | i = 1, . . . , s }

is aC-basis of MΓ /m ·MΓ . Antigenerators correspond to 1-dimensionalC[x , y ]-submodules of

MΓ , i.e. they form a C-basis of the so-called socle

(0 :MΓ
m) = {m ∈MΓ |m ·m = 0 ∈MΓ } .

Since each irreducible representation of G appears once in a G -stair L , sometimes, with

abuse of notation, we will say that an irreducible representation is a (anti)generator for L .

Definition 1.2.22. Given a connected G -sFd Γ , we will call, respectively, height and width of

Γ the integers h(Γ ) and w(Γ ) given by the height and the width of the smallest rectangle in N2

containing πN2 (Γ ).
Moreover, given an irreducible toric G -constellationF , we will call, respectively, height

and width ofF the integers h(F ) and w(F ) given by the height and the width of any G -stair

which representsF .

We will see in Lemma 1.3.3 that to have a certain height (or width) prescribes the position

of a G -constellation in the moduli spaces.
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1.3 The chamber decomposition of Θ and the moduli spacesMC

This section is devoted to the proof of the first main result (Theorem 1.3.17) of the first chapter.

In the first part of the section we will analyze the toric points ofMC and the corresponding

G -constellations. Then, we will show how to construct 1-dimensional families of nilpotent

G -constellations. Finally, in the last part, we will give the proof of the first main result.

1.3.1 The toric points ofMC

Remark 1.3.1. The toric points ofMC are the origins of the charts Uj (see Equation (1.1.3))

and they correspond to the toric C -stable G -constellations. Indeed, the toric action that makes

MC a toric variety, as described in beginning of this section, coincides with the action

MC ×T2 MC

([F ],σ) [σ∗F ].

←→

←[ →

This is a consequence of the universal property ofMC . Notice that, outside the exceptional

locus ofMC , i.e. on the open subset of free orbits, a direct computation is enough to show

that the two actions agree.

As a consequence, we have a total order on the toric G -constellations overMC , in the

sense that the first toric G -constellation is the G -constellation over the origin of U1, the second

one is the G -constellation over the origin of U2, and so on.

Remark 1.3.2. Let Γ be a G -stair, then there exists a uniqueσ ∈ Irr(G ) such that

y ·σ= 0 and x ·σ⊗ρ−1 = 0

in Γ . In particular, the representationσ corresponds to the first box of Γ . This representation is

important because, if we want to deform in a non-trivial way the G -constellationFΓ associated

to Γ keeping the property of being nilpotent, there are only two ways to do it, namely to modify

the C[x , y ]-module structure ofFΓ by imposing

y ·σ=λ ·σ⊗ρ−1, λ ∈C∗

or

x ·σ⊗ρ−1 =µ ·σ, µ ∈C∗.

Indeed, if y ·σ=λ ·σ⊗ρ−1 is not zero, then the nilpotency hypothesis implies

x ·σ⊗ρ−1 =
1

λ
x y ·σ= 0,

and the other case is similar. Comparing this with the proof of Lemma 1.2.16 one can show

that letting λ (resp. µ) varying inC∗ all the G -constellations so obtained are not isomorphic to

each other (as G -constellations). In particular λ,µ are coordinates on a chart ofMC around

FΓ .

As a consequence of the above remark, we obtain the following lemma.
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Lemma 1.3.3. IfF j is the toric G -constellation over the origin of the j -th chart of someMC ,

then we have

h(F j ) = k − j +1

or, equivalently

w(F j ) = j .

Proof. Let Γ j ⊂TG be a G -stair forF j . In particular, it has the form in Figure 1.10 where just

· · ·

...

...

...

· · ·

...

· · ·

· · ·

...

x αy β

x γy δ

Figure 1.10.

the labels of the boxes we are interested in are shown. Recall, from Section 1.2.2, that, if we

write the skew Ferrers diagram πN2 (Γ j ) = A∖B as the difference of two Ferrers diagrams A and

B , thenF j
∼=MΓ j

, where

MΓ j
∼=

IA

IA ∩ IB
,

and IA , IB are as in the proof of Lemma 1.2.12. Now, if we deformF j as in Remark 1.3.2, by

using the parameters a j , c j ∈C, we get relations:

x · x γy δ = a j xαy β

y · xαy β = c j x γy δ

and, the relations 1.1.4 tell us that

(γ−α+1,δ−β ) = (w(F ),−h(F ) +1) = ( j , j −k ) ∈N2

(α−γ,β −δ+1) = (−w(F ) +1,h(F )) = (1− j , k − j +1) ∈N2

which completes the proof.

The previous lemma implies the following result.

Corollary 1.3.4. Different toric G -constellations of the same height (or equivalently width)

cannot belong to the same chamber.
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1.3.2 One-dimensional families

Definition 1.3.5. Given a G -constellationF and its abstract G -stair ΓF , we will call its favorite

condition the stability condition θF ∈Θ defined by:

(θF )i =



































−2 if ρi is a generator and it is neither the first nor the last box of ΓF ,

−1 if ρi is a generator and it is either the first or the last box of ΓF ,

2 if ρi is an antigenerator and it is neither the first nor the last box of ΓF ,

1 if ρi is an antigenerator and it is either the first or the last box of ΓF ,

0 otherwise

Moreover, we will call the cone of good conditions forF , the cone:

ΘF =
�

θ ∈Θgen
�

�F is θ -stable
	

.

Definition 1.3.6. Let Γ be a stair and let Γ ′ ⊂ Γ be a substair. We will say that an element v ∈ Γ ′

is

• a left internal endpoint of Γ ′ if there exists w ∈ Γ ∖ Γ ′ such that x ·w = v or if y ·v ∈ Γ ∖ Γ ′;

• a right internal endpoint of Γ ′ if there exists w ∈ Γ ∖Γ ′ such that y ·w = v or if x ·v ∈ Γ ∖Γ ′.

Moreover, we will say that

• a left (resp. right) internal endpoint is a horizontal left (resp. right) cut if y · v ∈ Γ ∖ Γ ′

(resp. there exists w ∈ Γ ∖ Γ ′ such that y ·w = v );

• a left (resp. right) internal endpoint is a vertical left (resp. right) cut if there exists w ∈ Γ∖Γ ′

such that x ·w = v (resp. x · v ∈ Γ ∖ Γ ′);

Example 1.3.7. In Figure 1.11, the substair Γ has two internal endpoints, respectively a hori-

zontal left cut and a vertical right cut, while Γ ′ has only one internal endpoint which is a vertical

left cut.

Γ

Γ ′

0
1
2 3 4

5
6 7

8 0
1
2 3 4

5
6 7

8

Figure 1.11.
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Remark 1.3.8. If F is a G -constellation and ΓF is a G -stair for F , then a substair Γ ⊂ ΓF
corresponds to a G -equivariantC[x , y ]-submodule EΓ ofF if and only if it has only vertical

left cuts and horizontal right cuts. Moreover, if Γ is connected and θF is the favorite condition

ofF , then,

θF (EΓ ) =

(

1 if Γ has one internal endpoint,

2 if Γ has two internal endpoints.

Remark 1.3.9. LetF be a toric G -constellation with abstract G -stair ΓF and let E <F be a

subrepresentation whose substair ΓE ⊂ ΓF is connected. Then, if ΓE has two horizontal cuts or

two vertical cuts and θF is the favorite condition ofF , we have

θF (E ) = 0.

Remark 1.3.10. The following properties are easy to check for a toric G -constellationF :

• favorite conditions are never generic,

• the G -constellationF is θF -stable,

• there exist generic conditions θ ∈ Θgen such that F is θ -stable, i.e. the cone of good

conditions ΘF is not empty.

Moreover, given a chamber C , we have:

C =
⋂

[F ]∈MC

ΘF .

We prove only the third property as, in what follows, we shall need similar arguments.

Let ρi be any irreducible representation, we will denote byFρi
the G -equivariant C[x , y ]-

submodule ofF generated by ρi and, we will denote by Γρi
⊂ ΓF the abstract substair and

G -stair corresponding toFρi
andF respectively.

Consider an ϵ ∈Θ with the following properties:































ϵi = 0 if ρi is an antigenerator,

ϵi < 0 if ρi is neither a generator nor an antigenerator,

ϵi =−
∑

ρ j∈(Γρi
∖ρi )
ϵ j if ρi is a generator,

∑

ρi generator

ϵi < 1.

Then, for any subrepresentation E <F , we have

ϵ(E )>−
∑

ρi generator

ϵi >−1.

Hence, the G -constellationF is (θF + ϵ)-stable. Indeed, Remark 1.3.8 implies that, given

an irreducible proper G -equivariant C[x , y ]-submodule we have

(θF + ϵ)(E )> 0.
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On the contrary, if E is not irreducible then it is a direct sum of irreducible components and

(θF + ϵ)(E )> 0 follows by the additivity of θF + ϵ on direct sums.

We conclude by noticing that Θ∖Θgen is a union of hyperplanes and so, there is at least a

choice ϵ ∈Θ such that θF + ϵ is generic.

We will see in the proof of Theorem 1.3.17 that there is an easier way, which does not

involve any ϵ, to prove that ΘF is not empty.

Definition 1.3.11. An abstract linking stair is an abstract stair made of 2k boxes obtained from

an abstract G -stair Γ in either of the following ways:

1. (decreasing linking stair of Γ ) take two copies of Γ and make a new abstract stair by gluing

the right edge of the last box of one copy to the left edge of the first box of the other copy;

2. (increasing linking stair of Γ ) take two copies of Γ and make a new abstract stair by gluing

the lower edge of the last box of one copy to the upper edge of the first box of the other

copy.

A linking stair is a realisation of an abstract linking stair as a subset of the representation

tableau.

Remark 1.3.12. An abstract linking stair contains exactly k different abstract G -stairs.

Proposition 1.3.13. Let Γ be the abstract G -stair of a G -constellationF and let L be its abstract

decreasing linking stair. Consider any G -stair Γ ′ ⊂ L and its associated G -constellation F ′.
Then, the following are equivalent:

1. there exists at least a chamber C such that bothF andF ′ belong to C , i.e. ΘF ∩ΘF ′ ̸= ;,

2. h(F ′) = h(F )−1,

3. the substair Γ ′ ⊂ L has a horizontal left cut.

In particular,F ′ is the G -constellation next toF inMC as per Remark 1.3.1.

Example 1.3.14. Figure 1.12 describes the situation via an example. Here, we are considering

the action Z/9Z↶A2 (see Equation (1.1.1)).
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0
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6 7
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Γ
Γ ′

0
1
2 3 4

5
6 7
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1
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6 7

8
Γ

Γ ∩ Γ ′

Γ ′ L

h(Γ ) = 6,

w(Γ ) = 4,

h(Γ ′) = 5,

w(Γ ′) = 5.

Figure 1.12. The abstract linking stair L of an abstract G -stair Γ and a substair Γ ′ of L which

satisfies the hypotheses of Proposition 1.3.13.

Proof. (of Proposition 1.3.13). We start by introducing some notation.

LetF ,F ′ be two G -constellations. Given a proper subrepresentation E <F (resp. E ′ <
F ′) we will denote by E (resp. E ′) the corresponding subrepresentation E ′ <F ′ (resp. E <
F ). Here, by “corresponding" we mean that, since E is a subrepresentation of the regular

representation C[G ] of an abelian group, it decomposes as a direct sum of distinct irreducible

representations E ∼=⊕
j
ρi j

. We will denote by E ′ the subrepresentation ofF ′ ∼=C[G ] given by

the same summands:

E ′ ∼=⊕
j
ρi j

.

In particular, for all θ ∈Θ, the two rational numbers

θ (E ) and θ (E ′)

are the same. Moreover, we will denote by ΓE ⊂ Γ (resp. ΓE ′ ⊂ Γ ′) the substair associated to E
(resp. E ′).

Notice that, given a proper G -equivariantC[x , y ]-submoduleE <F , the subrepresentation

E ′ is not necessarily a C[x , y ]-submodule ofF ′. We are now ready to proceed with the proof.

(2)⇔(3) We omit the easy proof.

(1)⇒(3) Suppose, by contradiction, that Γ ′ ⊂ L has a vertical left cut. Then, by Remark 1.3.8, the

subrepresentation EΓ∩Γ ′ <F is aC[x , y ]-submodule because, in Γ , the substair Γ ∩Γ ′ has
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a vertical left cut by hypothesis and its last box is not internal. At the same time, again

by Remark 1.3.8, E ′Γ∩Γ ′ <F
′ is the complement of a C[x , y ]-submodule, because its first

box is not internal and it has a vertical right cut. Hence,

C ⊂ΘF ∩ΘF ′ ⊂ {θ (EΓ∩Γ ′ )> 0}∩ {−θ (EΓ∩Γ ′ )> 0}= ;,

which contradicts (1).

(3)⇒(1) In order to prove statement (1), we need to show that

ΘF ∩ΘF ′ ̸= ;.

We start by identifying the proper irreducible G -equivariant subsheaves E <F (resp.

E ′ <F ′) such that also E ′ (resp. E ) is a proper G -equivariant subsheaf ofF (resp. F ′).

Let E ′ <F ′ be a proper irreducible G -equivariant submodule ofF ′; we consider three

different cases.

Case 1. Both the first and the last box of the substair ΓE ′ ⊂ Γ ′ are internal endpoints.

Then, the same happens for ΓE ⊂ Γ . This is true because Γ has a vertical right cut in L ,

by the construction of a decreasing linking stair (see Definition 1.3.11), and hence, the

right internal endpoint of ΓE ′ in Γ ′, which is a horizontal cut by Remark 1.3.8, is different

from the right internal endpoint of Γ in L . Therefore, both internal endpoints of ΓE ′ cor-

respond to internal endpoints of ΓE of the same respective nature. As a consequence, the

subrepresentation E is a proper, non necessarily irreducible, G -equivariant submodule

ofF .

Case 2. The substair ΓE ′ has only the vertical left cut in Γ ′, and hence, its last box coincides

with the last box of Γ ′. In particular, this box is not the right internal endpoint of Γ in L .

We have to study the nature of the internal endpoints of ΓE . Notice first that it is enough

to study the right internal endpoint of ΓE because, if ΓE has still left internal endpoint,

then it is a vertical left cut. Let ρi be the label on the last box of Γ ′, then, the label on

the horizontal left cut of Γ ′ (i.e. its first box) is ρi+1. Now, since, by hypothesis (3), the

box labeled by ρi+1 is a horizontal left cut of Γ ′ ⊂ L , the box labeled by ρi in Γ has to

be a horizontal right cut for the substair ΓE . Therefore, ΓE has only vertical left cuts and

horizontal right cuts, and so, by Remark 1.3.8, E is a proper, non necessarily irreducible,

G -equivariant submodule.

Case 3. The substair ΓE ′ ⊂ Γ ′ has only the horizontal right cut, i.e. its first box coincides

with the first box of Γ ′. First of all notice that, as for the first analyzed case, the right

internal endpoint of ΓE ′ in Γ ′, which is a horizontal cut by hypothesis, is different from

the right internal endpoint of Γ in L , which is vertical by definition of decreasing linking

stair. Therefore, the box of Γ with the same label as the horizontal right cut of ΓE ′ is an

internal endpoint of ΓE and it is a horizontal right cut. Finally, the first box of Γ ′ in L is a

left internal endpoint for ΓE , and so it is a horizontal left cut by point (3) of the statement.

As a consequence, ΓE has two horizontal cuts.

In summary, if E ′ < F ′ is a proper irreducible G -equivariant submodule of F ′ such

that ΓE ′ has a vertical left cut, then also E <F is a proper, non necessarily irreducible,
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G -equivariant submodule. While, if ΓE ′ < Γ
′ has only the right horizontal cut, then ΓE has

two horizontal cuts.

Following the same logic, if E <F is a proper irreducible G -equivariant submodule of

F such that ΓE has a horizontal right cut, then also E ′ <F ′ is a proper, non necessarily

irreducible, G -equivariant submodule. While, if ΓE < Γ has only the left vertical cut, then

ΓE ′ has two vertical cuts.

We are now ready to exhibit a θ ∈Θgen suchF andF ′ are θ -stable. Let θF and θF ′ be

the respective favorite conditions forF andF ′ and let θ = θF +θF ′ be their sum. Then,

bothF andF ′ are θ -stable. Indeed,

– if E <F is a proper irreducible G -equivariantC[x , y ]-submodule ofF such that

also E ′ is a C[x , y ]-submodule ofF ′, then

θ (E ) = θF (E ) +θF ′ (E ) = θF (E ) +θF ′ (E ′)> 0

follows from the fact thatF is θF -stable andF ′ is θF ′-stable (see Remark 1.3.10);

– if E ′ <F ′ is a proper irreducible G -equivariantC[x , y ]-submodule ofF ′ such that

ΓE has two horizontal cuts, then

θ (E ′) = θF (E ′) +θF ′ (E ′) = θF (E ) +θF ′ (E ′) = θF ′ (E ′) = 1> 0

follows from the fact thatF ′ isθF ′-stable (see Remark 1.3.10) and from Remarks 1.3.8

and 1.3.9;

– if E <F is a proper irreducible G -equivariantC[x , y ]-submodule ofF such that

ΓE ′ has two vertical cuts, then

θ (E ) = θF (E ) +θF ′ (E ) = θF (E ) +θF ′ (E ′) = θF (E ) = 1> 0

follows from the fact thatF isθF -stable (see Remark 1.3.10) and from Remarks 1.3.8

and 1.3.9;

– if E <F (resp. E ′ <F ′) is a proper reducible G -equivariant C[x , y ]-submodule,

then

θ (E )> 0

follows by applying the previous points to the irreducible components of E and

from the additivity of θ .

The last issue here is that, in general, such θ is not generic, i.e.

θ ∈ΘF ∩ΘF ′ ∖ΘF ∩ΘF ′ .

In order to solve this problem, we can perturb θF and θF ′ the same way as as we did in

Remark 1.3.10 thus obtaining a generic eθ ∈ΘF ∩ΘF ′ . Consider the stability conditions
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ϵ,ϵ′ ∈Θ defined as follows:






































































ϵi = 0 if ρi is an antigenerator of ΓF ,

ϵ′i = 0 if ρi is an antigenerator of ΓF ′ ,

ϵi < 0 if ρi is neither a generator nor an antigenerator of ΓF ,

ϵ′i < 0 if ρi is neither a generator nor an antigenerator of ΓF ′ ,

ϵi =−
∑

ρ j∈(Γρi
∖ρi )
ϵ j if ρi is a generator of ΓF ,

ϵ′i =−
∑

ρ j∈(Γ ′ρi
∖ρi )
ϵ′j if ρi is a generator of ΓF ′ ,

∑

ρi generator of ΓF

ϵi +
∑

ρi generator of ΓF′

ϵ′i < 1,

where, as in Remark 1.3.10, Γρi
⊂ Γ (resp. Γ ′ρi

⊂ Γ ′) is the substair associated to the

C[x , y ]-submodule ofF (resp. F ′) generated by the irreducible subrepresentation ρi .

Now, if
eθ = (θF + ϵ) + (θF ′ + ϵ

′)

thenF andF ′ are eθ -stable, and ϵ and ϵ′ can be chosen in such a way that eθ is generic.

As a consequence ΘF ∩ΘF ′ ̸= ;.

We will see, in the proof of Theorem 1.3.17, that there is an easier way to prove thatΘF ∩ΘF ′
is not empty. By following the same logic, one can prove a similar statement for the increasing

linking stairs.

Proposition 1.3.15. Let Γ be the abstract G -stair of a G -constellationF and let L be its abstract

increasing linking stair. Consider any G -stair Γ ′ ⊂ L and its associated G -constellation F ′.
Then, the following are equivalent:

1. there exists at least a chamber C such that bothF andF ′ belong to C , i.e. ΘF ∩ΘF ′ ̸= ;,

2. h(F ′) = h(F ) +1,

3. the substair Γ ′ ⊂ L has a right vertical cut.

In particular,F is the G -constellation next toF ′ inMC in the sense of Remark 1.3.1.

1.3.3 Counting the chambers

Remark 1.3.16. Propositions 1.3.13 and 1.3.15 provide a way to build 1-dimensional families of

nilpotent G -constellations. In particular, each of this families corresponds to some exceptional

line in someMC . Moreover, the two gluings described in the definition of linking stair are

nothing but the two possible ways of deforming a toric G -constellation keeping the property

of being nilpotent described in Remark 1.3.2. This implies that the families coming from

Proposition 1.3.13 and Proposition 1.3.15 are exactly the 1-dimensional families of nilpotent

G -constellations appearing in the moduli spacesMC .
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An easy combinatorial computation tells us that the maximum number of chambers is

k !. Indeed, if we start by a G -constellation F1 of maximum height h(F ) = k , i.e. F1 has

one of the k abstract G -stairs shown in Figure 1.13, we can construct irreducible toric G -

0

1

...

k −2

k −1

,

1

2

...

k −1

0

, · · · ,

k −1

0

...

k −3

k −2

Figure 1.13. The abstract G -stairs of maximum height.

constellations F2, . . . ,Fk with respective abstract G -stairs Γ j for j = 2, . . . , k by recursively

applying the prescriptions in Proposition 1.3.13. Precisely, for any j > 1, each Γ j is a connected

substair, with horizontal left cut, of the decreasing linking stair of Γ j−1. This is true because at

each step the number of possible horizontal left cuts in the decreasing linking stairs decreases

by one.

To conclude that the maximum number of chambers is k !, we notice that the j -th time

that we apply Proposition 1.3.13 there are k − j possible G -stairs with horizontal left cut in the

decreasing linking stair of the abstract G -stair ofF j .

Theorem 1.3.17. If G ⊂ SL(2,C) is a finite abelian subgroup of cardinality k = |G |, then the

space of generic stability conditions Θgen is the disjoint union of k ! chambers.

Proof. It is enough to show that, if F1, . . . ,Fk are as in Remark 1.3.16, then there exists a

chamber

C =ΘF1
∩ΘF2

∩ · · · ∩ΘFk
̸= 0,

such thatF j is C -stable for all j = 1, . . . , k . We claim that, if, for all j = 1, . . . , k , the favorite

condition ofF j is θF j
, then

θ =
k
∑

j=1

θF j
∈C .

A priori, in order to prove the claim, we need to show both that θ is generic and that everyF j

is θ -stable. In fact, it is enough to show just that everyF j is θ -stable, because this implies that

Mθ has k torus fixed-points and, as a consequence, that θ is generic.

Let E j <F j be a proper G -equivariant irreducible C[x , y ]-submodule ofF j with substair

ΓE j
⊂ ΓF j

. Suppose also that E j =
n
⊕

s=m
ρs , where 0 ≤m ≤ n ≤ k − 1. We will denote by Ei , for

i = 1, . . . , j −1, j +1, . . . , k , the subrepresentation ofFi corresponding to E j , i.e.

Ei =
n
⊕

s=m

ρs , ∀i = 1, . . . , j −1, j +1, . . . , k .

Notice that

• if ΓE j+1
has two vertical cuts, then ΓEi

has two vertical cuts for every i > j +1;
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• if ΓE j−1
has two horizontal cuts, then ΓEi

has two horizontal cuts for every i < j −1.

This is true because every time we increase (resp. decrease) the index i , we perform a horizontal

left (resp. vertical right) cut in the decreasing (resp. increasing) linking stair which does not

affect the vertical left (resp. horizontal right) cut of ΓE j+1
(resp. ΓE j−1

).

Hence, for all i = 1, . . . , j −1, j +1, . . . , k , we have θFi
(E j )≥ 0 and, as a consequence

θ (E j ) =

 

θF j
+
∑

i ̸= j

θFi

!

(E j )> 0.

Remark 1.3.18. The proof of Theorem 1.3.17 provides an alternative way to prove that

ΘF ̸= ;

in Remark 1.3.10 and, that

ΘF ∩ΘF ′ ̸= ;

in the last part of the third point of the proof of Proposition 1.3.13.

For example, letF be a toric G -constellation with abstract G -stair of height h(F ) = j . We

constructF1, . . . ,F j−1,F j+1, . . . ,Fk by recursively applying Propositions 1.3.13 and 1.3.15, i.e.

• if i > j , thenFi has, as G -stair, a G -substair, with a horizontal left cut, of the decreasing

linking stair ofFi−1,

• if i < j , thenFi has, as G -stair, a G -substair, with a vertical right cut, of the increasing

linking stair ofFi+1.

Then, if θ = θF +
∑

θFi
is the sum of all favorite conditions, we have θ ∈ΘF .
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1.4 Simple chambers

In this section I will firstly introduce the notion of chamber stair which is a stair that encodes

all the data needed to reconstruct a chamber. Then, I will define simple chambers, which are

a particular kind of chambers with the property that any toric G -constellation belongs to at

least one of them. Finally, I will prove that there are exactly k ·2k−2 simple chambers.

Remark 1.4.1. Given a chamber C ⊆Θgen we can make a stair out of it, and we will call it the

chamber stair.

Let F1, . . . ,Fk be the toric G -constellations inMC . As explained in Proposition 1.3.13

(resp. Proposition 1.3.15), the abstract G -stairs Γ j ,Γ j+1 of two consecutive G -constellations

F j ,F j+1 are substairs of the same stair L , namely the decreasing linking stair of Γ j (resp. the

increasing linking stair of Γ j+1). Moreover they have non-empty intersection in L .

Now, if Γ1, . . . ,Γk are the respective abstract G -stairs ofF1, . . . ,Fk , we can construct a new

abstract stair ΓC by gluing consecutive abstract G -stairs along their common parts.

Definition 1.4.2. The abstract chamber stair of C or the abstract C -stair is the abstract stair ΓC
obtained as described above.

Example 1.4.3. Consider the case G ∼= Z/5Z. Figure 1.14 explains how to build an abstract

C -stair starting from the abstract G -stairs of the G -constellations in some chamber C .

0
4
3
2
1

0
4

3
2
1 3

2
10

4

32
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4 2 3 4 0 1

Γ1 Γ2 Γ3 Γ4 Γ5

1
2
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0 1

2
3 4

0 1
2 3 4 0 1

ΓC

Figure 1.14. The abstract C -stair ΓC is obtained by gluing, along their common part, the

abstract Z/5Z-stairs Γi and Γi+1 for i = 1, . . . , 4.

In particular, we have glued the boxes of an abstract G -stair with the boxes of the

next abstract G -stair.
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Definition 1.4.4. A chamber stair associated to C or a C -stair is any realisation eΓC of the

abstract chamber stair ΓC associated to C as a subset of the representation tableau.

Remark 1.4.5. Let C ⊂ Θgen be a chamber and let ΓC ⊂ TG be a C -stair. Consider a G -stair

Γ ⊂ ΓC of width w(Γ ) = j and the associated G -constellationFΓ . Let us also denote by b , b ′ ∈ Γ
the first and the last box of Γ . Suppose thatFΓ is not C -stable. Then, there are two consecutive

C -stable G -constellationsF andF ′ with associated respective G -stairs ΓF ,ΓF ′ ⊂ ΓC such that

b ∈ ΓF and b ′ ∈ ΓF ′ .
Therefore, Γ is a substair of both the decreasing linking stair L of ΓF and the increasing

linking stair L ′ of ΓF ′ . In particular, as a consequence of Proposition 1.3.13 (and of Proposi-

tion 1.3.15), one and only one between the following two possibilities must occur, namely:

(1.4.1)
w(F ) = j −1,w(F ′) = j , and b (resp. b ′) is a left (resp. right) horizontal cut of Γ in L ,

w(F ) = j ,w(F ′) = j +1, and b (resp. b ′) is a right (resp. left) vertical cut of Γ in L .

On the other hand, again as a consequence of Proposition 1.3.13 and Proposition 1.3.15, ifFΓ
is C -stable, none of the conditions in 1.4.1 can hold true, and, in this case, Γ has horizontal left

cut and vertical right cut in ΓC .

Summing up, if Γ ⊂ ΓC is a connected G -substair associated to a toric G -constellationFΓ
then only the following two cases can occur:

• the G -constellationFΓ is C -stable and Γ has a horizontal left cut and a vertical right cut,

or

• the G -constellationFΓ is not C -stable and Γ has two horizontal cuts or two vertical cuts.

Lemma 1.4.6. Different chambers have different abstract chamber stairs.

Proof. First, recall from Remark 1.4.5 that, as per Proposition 1.3.13, the G -stair of any toric

C -stable G -constellation has a vertical right cut in the C -stair and a horizontal right cut in the

decreasing linking stair of the previous G -constellation.

Suppose that two chambers C and C ′ have the same abstract chamber stair Γ . In particular,

from the construction of abstract chamber stairs, it follows that C and C ′ have the same first

(in the sense of Remark 1.3.1) toric G -constellation. Suppose that C and C ′ differ for the j -th

toric G -constellation. This translates into the fact that, ifF j andF ′j are the respective j -th

G -constellations of C and C ′ and Γ j ,Γ ′j are their abstract G -stairs, then

Γ j ̸= Γ ′j .

Notice that, callingF j−1 the ( j −1)-th toric G -constellation of C (and C ′) and calling Γ j−1

its abstract G -stair, both Γ j and Γ ′j are substairs of the decreasing linking stair L j−1 of Γ j−1 and

they have horizontal right cut in L j−1 as noticed above. Since, Γ j−1,Γ j and Γ ′j are connected

and Γ j−1 ∩ Γ j ,Γ j−1 ∩ Γ ′j ̸= ; in L j−1, it follows that:

Γ j−1 ∪ Γ j ⊊ Γ j−1 ∪ Γ ′j or Γ j−1 ∪ Γ j ⊋ Γ j−1 ∪ Γ ′j .

Finally, if, without loss of generality, we suppose

Γ j−1 ∪ Γ j ⊊ Γ j−1 ∪ Γ ′j ⊂ Γ ,
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we get a contradiction. Indeed, as noticed at the beginning, Γ j has a vertical right cut in Γ , but

it has to have a horizontal right cut in Γ j−1∪ Γ ′j because it is a connected substair of L j−1 which

strictly contains Γ j .

Remark 1.4.7. Since the abstract chamber stair ΓC of a chamber C contains a copy of the

abstract G -stairs of the toric C -stable G -constellations, we will think of such abstract G -stairs

as substairs of ΓC .

Similarly, given a C -stair eΓC ⊂ TG which realize ΓC , we will realize the abstract G -stairs

associated to the G -constellations in C as substairs of eΓC .

Definition 1.4.8. Given a chamber C , we will say that a toric C -stable G -constellation is

C -characteristic if its abstract G -stair has the same generators as the abstract C -stair.

We will say that a chamber C is simple if there is a toric C -stable G -constellation whose

abstract G -stair has the same generators of the abstract C -stair, i.e. if there exists at least one

C -characteristic G -constellation.

Example 1.4.9. An example of a simple chamber is given by the chamber CG in Theorem 1.0.21,

i.e. the chamber whose associated moduli space is G -Hilb(A2). In particular, the abstract

CG -stair has only one generator, namely ρ0.

Definition 1.4.10. Let Γ be a G -stair and let ρi and ρ j be its first and its last generators.

• We will call left tail of Γ the substair of Γ given by

lt(Γ ) =
�

y s ·ρi

�

� s > 0
	

.

• We will call right tail of Γ the substair of Γ given by

rt(Γ ) =
�

x s ·ρ j

�

� s > 0
	

.

• We will call tail of Γ the substair of Γ given by

t(Γ ) = lt(Γ )∪ rt(Γ ).

Similarly one can define left/right tails for abstract G -stairs.

Remark 1.4.11. If two G -stairs Γ and Γ ′ have the same generators, then they differ by their

tails, i.e. the following equality of subsets of the representation tableau holds true:

Γ ∖ t(Γ ) = Γ ′∖ t(Γ ′)

In particular, if a G -stair Γ has a tail of cardinality m , then there are m +1 G -stairs with the

same generators as Γ .

In simple words, the other G -stairs are obtained by moving some boxes from the left tail to

the right tail (and viceversa) of Γ .

Proposition 1.4.12. The following properties are true.

1. Any toric G -constellation is C -stable for some simple chamber C .
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2. In order to find all the toric C -stable G -constellations of a simple chamber C , it is enough

to know at least one C -characteristic G -constellation.

3. If C is a simple chamber, all the toric G -constellations that admit a G -stair with the

same generators as the C -stair belong to C , i.e. they are C -stable. In particular, they are

C -characteristic.

Proof. Let ΓC be the abstract C -stair. We will prove the first two points in a constructive way.

In order to do so, we will show that, given a toric G -constellationF , there is a unique simple

chamber C such thatF is C -characteristic.

LetF be a toric G -constellation with associated abstract G -stair ΓF of height h(F ) = j .

In order to build a chamber starting fromF , we have to first recursively apply Propositions

1.3.13 and 1.3.15 j −1 times and k − j times respectively, to obtain k toric constellations

F1, . . . ,F j−1,F ,F j+1, . . . ,Fk

and, finally, apply Theorem 1.3.17 to conclude that there exists a chamber C such that the

constellationsF1, . . . ,F j−1,F ,F j+1, . . . ,Fk correspond to the toric points ofMC .

The condition that the chamber must be simple translates into the fact that, at every step,

no new generators appear. This may be only achieved by performing, every time that we apply

Proposition 1.3.13 (resp. Proposition 1.3.15), the first (resp. last) possible horizontal (resp.

vertical) cut in the decreasing (resp. increasing) linking stair.

In order to prove the last point, we start by considering a G -constellationF whose abstract

G -stair ΓF has the same generators as the C -stair and such that it has empty right tail, i.e.

t(ΓF ) = lt(ΓF ).
Let m = #lt(ΓF ) be the cardinality of the left tail of ΓF . The first m times we apply Proposi-

tion 1.3.13 by performing the first possible horizontal cut we increase the cardinality of rt(ΓF )
by 1 and, consequently, we decrease the cardinality of lt(ΓF ) by 1. In this way we find, as

explained in Remark 1.4.11, all the toric G -constellations which admit a G -stair with the same

generators as the C -stair and all of them are C -stable by Theorem 1.3.17.

Lemma 1.4.13. Let Γ be a G -stair. Then Γ has at most
�

k +1

2

�

generators.

Proof. The statement follows from the following observation. If a stair has r generators, then

it has at least 2r −1 boxes, as shown in Figure 1.15.

...

· · ·
...

· · · ...

...

· · ·

︸

︷

︷

︸

︷

︸

︸

︷

r

r −1

Figure 1.15.
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Now, a G -stair has exactly k boxes. Hence,

r ≤
�

k +1

2

�

.

Example 1.4.14. Non-simple chambers exist.

As already mentioned in Theorem 1.0.21, there is a chamber CG such that G -Hilb(A2)∼=
MCG

as moduli spaces. In particular,

CG ⊂ {θ ∈Θ | θ0 < 0, θi > 0 ∀i = 1, . . . , k −1 } ,

and the abstract G -stairs of its toric constellations are shown in Figure 1.16.

ΓF1

...

0

k -1

3

2

1

ΓF2

...

0

k -1

3

2

1

ΓF3

...

0

k -1

3

21
· · ·

· · · ΓFk−1

· · ·0

k -1

k -2k -31

ΓFk
.

· · ·0 k -1k -2k -31

Figure 1.16. The abstract G -stairs of the CG -stable toric G -constellations.

Notice that, for i = 1, . . . , k and j = 0, . . . , k −1, the favorite conditions θFi
are defined by

(θFi
) j =



































−2 if j = 0 & i ̸= 1, k ,

−1 if j = 0 & (i = 1 or i = k ),

1 if j = i −1 ̸= 0,

1 if j = i ,

0 otherwise.

and that the condition

θ =
k
∑

i=1

θFi
= (−2k +2, 2, . . . , 2

︸ ︷︷ ︸

k−1

)

belongs to CG . More precisely, the moduli space G -Hilb(A2) parametrises all the toric G -

constellations generated by the trivial representation. As a consequence, the abstract G -stairs

ΓFi
, for i = 1, . . . , k , have, as only generator, the trivial representation.

Let us reverse this property by asking the presence of just one antigenerator, for exam-

ple, the trivial representation. It is easy to see that there is a chamber C OP
G whose toric G -

constellations, as requested, have the abstract G -stairs in Figure 1.17.
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ΓF ′1

...

k -1

k -2

2

1

0

ΓF ′2

...

k -2

k -3

1

0k -1

ΓF ′3

...

k -3

1

0k -1k -2

· · ·

· · · ΓF ′k−1

· · ·2

1

0k -13

ΓF ′k .

· · ·1 0k -1k -22

Figure 1.17. The abstract G -stairs of the C OP
G -stable toric G -constellations.

In particular,

C OP
G ⊂ {θ ∈Θ | θ0 > 0, θi < 0 ∀i = 1, . . . , k −1 } .

We will call the associated moduli space

G - HilbOP(A2) :=MC OP
G

.

Notice that, while C OP
Z/3Z is simple, C OP

Z/kZ is not simple for k ≥ 4 because the number of genera-

tors of the C OP
Z/kZ-stair is

k −1>
�

k +1

2

�

∀k ≥ 4.

Therefore, as a consequence of Lemma 1.4.13, there is no C OP
Z/kZ-characteristic G -constellation.

We show, as an example, the abstract chamber stairs of CG and C OP
G in the case k = 5.

1

2

3

4

0 1 2 3 4

0

1

2

3

4 0

1

2

3 4 0

1

2 3 4 0

1 2 3 4 0

Figure 1.18. The abstract CZ/5Z-stair and the abstract C OP
Z/5Z-stair.

Theorem 1.4.15. If G ⊂ SL(2,C) is a finite abelian subgroup of cardinality k = |G |, then the

space of generic stability conditions Θgen contains k ·2k−2 simple chambers.

Proof. LetB be the set of of possible sets of generators for a G -stair, i.e.

B =
�

A ⊂TG

�

� there exists a G -stair whose generators are the elements in A
	

,
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and let G be the set of all G -stairs

G = { Γ ⊂TG | Γ is a G -stair } .

Consider the subsemigroup Z of TG

Z =
�

(αk +γ,βk +γ,ρ0) ∈TG

�

�α,β ,γ≥ 0
	

.

We will denote byB and G the set of equivalence classes

B =B/∼Z , and G =G/∼Z

where, if A1, A2 ∈B (resp. Γ1,Γ2 ∈ G ), then A1 ∼Z A2 (resp. Γ1 ∼Z Γ2) if there exist z ∈ Z such

that

A1 = A2+ z or A2 = A1+ z (resp. Γ1 = Γ2+ z or Γ2 = Γ1+ z ).

Notice that, if two G -stairs are ∼Z -equivalent also their sets of generators are ∼Z -equivalent.

However, the contrary is not true.

Now, the number of simple chambers equals the cardinality of B . Indeed, Proposi-

tion 1.4.12 implies that the chamber C is uniquely determined by a constellationF whose

G -stair has the same generators as the C -stair. More precisely, C is uniquely determined by the

generators of any characteristic C -stair ΓF . Although there are infinitely many G -stairs corre-

sponding toF , Remark 1.2.18 tells us that two G -stairs correspond to the same G -constellation

if and only if they differ by an element in Z , i.e. they are ∼Z -equivalent.

LetGr be the set of G -stairs with r generators and letG r =Gr /∼Z be the induced quotient.

We have a surjective map

Ψ :G →B

which associates to each G -stair its set of generators, and this map descends to the sets of

equivalence classes

Ψ :G →B ,

because ∼Z -equivalent G -stairs correspond to ∼Z -equivalent sets of generators.

Now,B decomposes as a disjoint union (see Lemma 1.4.13) as follows:

B =

�

k+1
2

�

⊔

r=1

Ψ(G r ).

Our strategy is to compute Ψ(G r ) for every 1≤ r ≤
�

k+1
2

�

and then sum over all r . For r = 1

we have |Ψ(G 1)|= k . If we impose the presence of r ≥ 2 generators and of a tail of cardinality j

then there are

k ·
�

k −2− j

2r −3

�

elements in Ψ(G r )which comes from G -stairs with a tail of cardinality j . Indeed, as shown in

Figure 1.19, we have 2r −1 fixed boxes (generators and anti-generators), j boxes contained in

the tails (dashed areas) and k −2r +1− j boxes left to arrange in 2r −2 places (dotted areas).

The number of possible ways to arrange the boxes is computed via the stars and bars method1.
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r

r −1

Figure 1.19.

In particular, there are

�

(2r −2) + (k −2r +1− j )−1

k −2r +1− j

�

=

�

k −2− j

2r −3

�

of them.

Finally, if we sum over all possible r and j , we get

k ·



1+

�

k+1
2

�

∑

r=2

k−2r+1
∑

j=0

�

k −2− j

2r −3

�



= k ·2k−2.

Remark 1.4.16. An easy combinatorial computation shows that the set G in the proof of

Theorem 1.4.15 has cardinality k ·2k−1, i.e. that there there are exactly k ·2k−1 isomorphisms

classes of toric G -constellations. As a consequence, in order to list all the G -constellations,

which are k · 2k−1, it is enough to look at the k · 2k−2 simple chambers instead of all the k !

chambers.

We conclude this section with two examples which help us understand the notions just

introduced.

Example 1.4.17. In this example we treat the case G ∼=Z/5Z.

The following picture contains a list of the possible shapes of the abstract chamber stairs

of simple chambers and, in each case, the shapes of the G -stairs associated to the toric G -

constellations belonging to the respective simple chamber.

1In a more suggestive way, this procedure might be called “combinations with repetition of 2r −2 elements of

class k −2r +1− j ".
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Figure 1.20. Description of the simple chambers for the action of Z/5Z.

As predicted by Theorem 1.4.15, the possible shapes for the chamber stairs of simple

chambers are 8= 25−2, and there are 5 different ways to label each chamber stair.

Example 1.4.18. In this example we treat the case G ∼=Z/4Z.

The following picture contains a list of the possible shapes of the abstract chamber stairs

and, in each case, the shapes of the G -stairs associated to the toric G -constellations belonging

to the respective chamber.

Figure 1.21. Description of the chambers for the action of Z/4Z.

Notice that the first 4= 24−2 pictures correspond to simple chambers. Moreover, as pre-

dicted by Theorem 1.3.17, the possible shapes for the chamber stairs are 6= (4−1)!, and there

are 4 different ways to label each chamber stair.

Note also that, after having labeled each box appropriately, the first and last chambers in

Figure 1.21 correspond to CG and C OP
G respectively (see Example 1.4.14).
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1.5 The costruction of the tautological bundlesRC

The quasi projective varietyMC is a fine moduli space obtained by GIT as described in [45] by

King. In particular, there exists a universal familyUC ∈Ob Coh(MC ×A2). The tautological

bundle is the pushforward

RC = (πMC
)∗(UC ).

Recall that (see Remark 1.0.20) it is a vector bundle of rank k = |G | whose fibres are G -

constellations and, more precisely, over each point [F ] ∈MC the fibre (RC )[F ] is canonically

isomorphic to the space of global sections H 0(A2,F ).
In this section we will give an explicit construction of the tautological bundlesRC for all

chambers C ⊂ Θgen in terms of their chamber stairs. We will adopt the same notation as in

Section 1.3.1.

The following proposition is the key result that we will use in this section.

Proposition 1.5.1 ([29, Proposition 2.4.]). Letπ :A2→ X be the projection map where X =A2/G

and G ⊂ Sl(2,C) is any (possibly nonabelian) finite subgroup.

Let ϵ : Y → X be the crepant resolution of singularities of X . We denote by O ′ =OA2 ⊗
OX

OY =

ϵ∗π∗OA2 and by eO =O ′/TorOY
O ′. Then, the OY -module eO is locally free of rank |G |.

After some preliminary results, we shall prove the following generalisation of Proposi-

tion 1.5.1.

Theorem 1.5.2. Let π :A2→ X be the projection map where X =A2/G and G ⊂ Sl(2,C) is an

abelian finite subgroup.

Let ϵ : Y → X be the crepant resolution of singularities ofA2/G and letK ⊂OA2 be a coherent

(G -invariant) monomial ideal sheaf. We denote byK ′ the sheafK ′ =K ⊗
OX

OY
∼= ϵ∗π∗K and

we consider fK =K ′/TorOY
K ′. Then, the OY -module fK is locally free of rank |G |.

Notation 1.6. From now on, given a coherent monomial ideal sheafK ⊂OA2 , we will denote

by fK the OY -module defined by

fK = ϵ∗π∗K /TorOY
ϵ∗π∗K .

Lemma 1.6.1. Suppose thatK is generated by the monomials xα1 y β1 , . . . , xαs y βs . Then, on

each toric chart Uj ⊂ Y with coordinates (a j , c j ), the sheaf fK agrees with the sheafH j associated

to the C[a j , c j ]-module:

H j =H 0(Uj ,RC ) =
K j

K j ∩ I j
⊂
C[a j , c j , x , y ]

K j ∩ I j
,

where K j and I j are the ideals of C[a j , c j , x , y ] given by

K j = (x
α1 y β1 , . . . , xαs y βs )

and

I j = (a j y k− j − x j , c j x j−1− y k− j+1, a j c j − x y ),
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and the gluings on the intersections Ui ∩Uj , for 1≤ i , j ≤ k , are given by:

Γ (Ui ∩Uj ,Hi ) Γ (Ui ∩Uj ,H j )

x x ,

y y ,

ai a
i− j+1
j c

i− j
j ,

ci a
j−i
j c

j−i+1
j .

←→
ϕi j

←[ →

←[ →

←[ →

←[ →

Proof. The proof is achieved by direct computation, after noticing that the gluings on the

intersections are deduced from the toric description of the toric quasiprojective varietyMC

given at the beginning of Section 1.3.1 and, in particular, from Equations 1.1.4.

Remark 1.6.2. If xα1 y β1 , . . . , xαs y βs are the generators of some C -stair ΓC andK is defined as

in Lemma 1.6.1, all the G -sFd associated to the toric fibres of fK are substairs of ΓC . This is a

consequence of Nakayama’s Lemma together with the following three facts:

(1.6.1)

∀ j = 1, . . . , k ,∀i = 1, . . . , s xαi+1 y βi+1 ∈ (K j ∩ I j ) + (a j , c j ),
∀ j = 1, . . . , k , xα1 y β1+k ∈ (K j ∩ I j ) + (a j , c j ),
∀ j = 1, . . . , k , xαs+k y βs ∈ (K j ∩ I j ) + (a j , c j ).

The relations 1.6.1 follow from the easy observations that

xαi y βi · (a j c j − x y ) = a j c j xαi y βi − xαi+1 y βi+1 ∈ K j ∩ I j ,

y j−1 · xα1 y β1 · (c j x j−1− y k− j+1) = c j xα1+ j−1 y β1+ j−1− xα1 y β1+k ∈ K j ∩ I j ,

x k− j · xαs y βs · (a j y k− j − x j ) = a j xαs+k− j y βs+k− j − xαs+k y βs ∈ K j ∩ I j .

We are now in position to prove Theorem 1.5.2.

Proof. ( of Theorem 1.5.2 ). By construction, fK agrees with O ⊕|G |Y outsides the exceptional

divisor. Moreover, since by definition fK is torsion free, by [24, §2 Prop. 20], we have an injective

morphism of sheaves

fK E←- →
ψ

for some locally free sheaf E of rank k . We want to show that, at the stalks level, the morphism

ψ induces inclusions

fKp

|G |
⊕

i=1
OY ,p←- →

ψp

for all p ∈ Y , such that the image of eachψp is a direct sum of principal, eventually non-proper,

ideals of OY ,p .

Let us restrict to the toric chart Uj for some j = 1, . . . , k . We will adopt the notation of

Lemma 1.6.1. It is enough to study the relations among the generators of the stalk over the

origin of Uj , because the locus where the sheaf fK fails to be locally free must be a toric
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subvariety of Y . Therefore, we focus on the C[a j , c j ](a j ,c j )-moduleH j 0 j
where 0 j ∈Uj is the

origin andH j is the sheaf associated to the C[a j , c j ]-module H j defined in Lemma 1.6.1. Let

{m1, . . . , mN } be a minimal set of generators ofH j 0 j
made of monomials in the variables x

and y . Notice that the generators of the ideal K j ∩ I j have one of the following forms

(1.6.2)

a j xαy β+k− j − xα+ j y β ,

c j xα+ j−1 y β − xαy β+k− j+1,

a j c j xαy β − xα+1 y β+1,

for some α,β ∈N such that the two monomials in the variables x and y appearing in each

binomial belong to K j . To conclude, it is enough to prove that there are no relations with

coefficients in C[a j , c j ] between the generators mi for i = 1, . . . , N .

First recall that, if a monomial xαy β belongs to K j , then the monomial xα+1 y β+1 is in

K j ∩ I j + (a j , c j ) (see Remark 1.6.2).

Now we show that there are no degree one relations between the mi ’s. Indeed, a degree

one relation with coefficients in C[a j , c j ]must be of the following form

(1.6.3) c j xαy β −a j xα−2 j+1 y β+2k−2 j+1.

Suppose by contradiction that there exist i and j such that

mi = xαy β and m j = xα−2 j+1 y β+2k−2 j+1.

By manipulating appropriately the generators in (1.6.2), we also obtain

xαy β −a 2
j xα−2 j y β+2k−2 j

which, together with (1.6.3), implies that

a j (a j c j − x y )xα−2 j y β+2k−2 j ∈ K j ∩ I j .

This tells us that xα−2 j y β+2k−2 j ∈ K j and, by Remark 1.6.2, that

xα−2 j+1 y β+2k−2 j+1 ∈ K j ∩ I j + (a j , c j )

i.e., by Nakayama’s Lemma, that xα−2 j+1 y β+2k−2 j+1 does not belong to the minimal set of

generators {mi | i = 1, . . . , N }. Similarly one proves that there are no higher degree relations

between the mi ’s and, as a consequence, that N = k .

Remark 1.6.3. As expected in dimension 3, Theorem 1.5.2 is, in general, false. For instance,

given the (Z/2Z)2 action over A3 defined by the inclusion

(Z/2Z)2 Sl(3,C)

(1, 0)





−1 0 0

0 1 0

0 0 −1



 ,

(0, 1)





1 0 0

0 −1 0

0 0 −1



 ,

← →

←[ →

←[ →
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the quotient singularity X =A3/(Z/2Z)2 admits four different crepant resolutions ϵi : Yi → X ,

for i = 1, . . . , 4. All of them are toric and they are described by the planar graphs in Figure 1.22.

These diagrams are obtained by considering a fan Σi for each resolution Yi then, each simplex

e1 e2

e3

v1v2

v3

Y1

e1 e2

e3

v1v2

v3

Y2

e1 e2

e3

v1v2

v3

Y3

e1 e2

e3

v1v2

v3

Y4

Figure 1.22. Toric description of the crepant resolutions of A3/(Z/2Z)2.

in the planar graph is the intersection of a cone in Σi , with the plane containing the heads

of the rays that generate Σi . Notice that Y1 differs from the other resolutions by just one flop

Y1 Yi

→→
σi for i = 2, 3, 4.

Now, let eOi , for i = 1, . . . , 4, be the torsion free OYi
-module defined by

eOi = ϵ
∗
i π∗OA3/TorOYi

ϵ∗i π∗OA3 ,

where π : A3 → X is the canonical projection. A direct computation shows that only eO1 is

locally free, and, for i = 2, 3, 4, the locus where eOi fails to be locally free coincides with the line

flopped byσi . In this setting, it can be shown that the pair (Y1, eOi ) is canonically isomorphic

to the pair ((Z/2Z)2−Hilb(A3),R)whereR is the tautological bundle.

In this last part of Section 1.5 we state and prove the last main theorem. Before to give the

proof, we will also state and prove some corollaries and results needed in the proof.

Theorem 1.6.4. Let C ⊂Θgen be a chamber and let ΓC ⊂TG be a C -stair. Suppose that ΓC has

s ≥ 1 ordered (see Remark 1.2.20) generators v1, . . . , vs with associated monomials

xα1 y β1 , . . . , xαs y βs ∈C[x , y ].

Consider the ideal sheafK = (xα1 y β1 , . . . , xαs y βs )OA2 , then

RC
∼= ϵ∗π∗K /TorOMC

(ϵ∗π∗K ).

The following corollary is a direct consequence of Theorem 1.6.4 Lemma 1.6.1

Corollary 1.6.5. On each toric chart Uj ⊂MC with coordinates (a j , c j ), the tautological bundle

RC |Uj
agrees with the sheafH j associated to the C[a j , c j ]-module H j in Lemma 1.6.1.

Remark 1.6.6. For the trivial ideal K = (1) = C[x , y ] Corollary 1.6.5 recovers Nakamura’s

description of the G -Hilbert scheme when G is abelian (see [52]).
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Remark 1.6.7. Notice that, over the origin of the first and the last charts, the OU1
-moduleH1

and the OUk
-moduleHk have, as toric fibres, the expected G -constellationsF1 andFk , i.e

F1
∼=H101

∼=
(xα1 y β1 )

(xα1 y β1+k , xα1+1 y β1 )
⊂

C[x , y ]
(xα1 y β1+k , xα1+1 y β1 )

and

Fk
∼=Hk 0k

∼=
(xαs y βs )

(xαs+k y βs , xαs y βs+1)
⊂

C[x , y ]
(xαs+k y βs , xαs y βs+1)

,

where 0i ∈Ui is, for i = 1, k , the origin.

We prove this only for the origin of Uk , the other proof is similar. We start by showing that

xαi y βi ∈ (Kk ∩ Ik ) + (ak , ck ) for i = 1, . . . , s −1.

Notice that, for all i = 1, . . . , s −1, we have

αi ≥ 0, βi >βi+1 >βs ≥ 0, αi +k −1≥αi+1.

Therefore, we can write:

ck xαi+k−1 y βi−1− xβi y αi =

(

ck xαi+k−1−αi+1 y βi−1−βi+1 (xαi+1 y βi+1 )− xαi y βi

(xαi y βi−1)(ck x k−1− y )

which implies

xαi y βi ∈ (Kk ∩ Ik ) + (ak , ck ) ∀i = 1, . . . , s −1.

Now, we have

Kk ∩ Ik +(ak , ck ) = (x
αs y βs )∩ Ik +(ak , ck ) = (x

αs y βs ) · Ik +(ak , ck ) = (x
αs+k y βs , xαs y βs+1, ak , ck ),

which gives

Hk 0k
∼=

(xαs y βs )
(xαs+k y βs , xαs y βs+1, ak , ck )

⊂
C[x , y , ak , ck ]

(xαs+k y βs , xαs y βs+1, ak , ck )
.

Corollary 1.6.8. Let C andK be as in Theorem 1.6.4. Then,MC can be identified with a closed

G -invariant subvariety of Quot|G |K (A
2).

Definition 1.6.9. Let K ⊂C[x , y ] be the ideal generated by the (ordered) set of monomials

�

xαi y βi
�

� i = 1, . . . , s
	

associated to the generators of some chamber stair ΓC and let ΓK = { (m , i ) ∈TG |m ∈ K } be

the subset of the representation tableau corresponding to K . Given a monomial mb ∈ K

corresponding to a box b ∈ ΓC ⊂ ΓK , we will say that:

• the property (A j ) holds for mb (or for b ) if

x− j y k− j ·mb ∈ ΓK ,
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• the property (C j ) holds for mb (or for b ) if

x j−1 y −k+ j−1 ·mb ∈ ΓK .

Example 1.6.10. Consider the action of Z/4Z on A2 induced by the representation (1.1.2).

Let θ ∈ Θgen be the generic stability condition θ = (−2,1,2,−1) (see Remark 1.3.18) and C

the chamber containing it.Then, a chamber stair ΓC ⊂ TG for C is depicted in Figure 1.23.

Moreover, the number j appears in red (resp. in blue) in a box if the property (A j ) (resp. (C j ))

holds for that box.

N

N

4

4

4

4 44 4

3

3

3

2

1 1

1 1 1 1

2

2 2 2 2
333

Figure 1.23. The property (A j ) (resp. (C j )) holds for a box, if the number j appears in red (resp.

blue) in the box.

The abstract G -stairs of the toric C -stable G -constellations are listed in Figure 1.24. In

particular, C is a simple chamber and the third toric G -constellation is C -characteristic.

0
3
2
1

0 1

2
3 0 1 2

3 3 0 1 2

Figure 1.24. The abstract C -stairs of the toric C -stable G -constellations.

Lemma 1.6.11. If the property (A j ) (resp. (C j )) holds for a box b ∈ ΓC then it holds also for the

box after (resp. before) b .

Proof. Let mb = xαy β be the monomial associated to the box b . From Definition 1.6.9, it

follows immediately that, if the property (A j ) (resp. (C j )) holds for b , then it holds for all the

monomials x γy δ such that γ≥α and δ≥β . This proves the Lemma in the case in which the

box after (resp. before) b is on the right (resp. above) b .

We prove the remaining case for the property (C j ) and we leave the similar proof for

(A j ). We have to prove that, if two monomials of the form xαy β , xα−1 y β correspond to some
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successive boxes in ΓC and the property (C j ) holds for xαy β then it holds also for xα−1 y β . In

other words, we suppose that

m1 = xα+ j−1 y β−k+ j−1 ∈ K ,

and we want to prove that

m2 = xα+ j−2 y β−k+ j−1 ∈ K .

Let b1, b2 be the boxes corresponding to m1, m2 and let b be the box corresponding to xα−1 y β .

If b1 ∈ ΓK ∖ ΓC it follows easily that b2 ∈ ΓK . Suppose b1 ∈ ΓC and consider the connected

substair Γ ⊂ ΓC whose first box is b and whose last box is b1. We have, by construction,

w(Γ ) = j and h(Γ ) = k − j +2,

which imply that Γ contains k +1 boxes.

Let Γ ′ = Γ ∖ {b1} be the connected G -substair of ΓC obtained by removing the last box from

Γ and let b ′ ∈ ΓC be the last box of Γ ′. Now, by construction, b is a vertical left cut for Γ ′ in ΓC
and, as a consequence of Remark 1.4.5 also b ′ is a vertical cut. Therefore b ′ must correspond

to the monomial m2 from which it directly follows

b ′ = b2 ∈ ΓC ,

which implies the thesis.

Proof. ( of Theorem 1.6.4 ). Let fK be the sheaf defined in the statement, i.e.

fK ∼= ϵ∗π∗K /TorOMC
(ϵ∗π∗K ).

Theorem 1.5.2 implies that fK is locally free, i.e. it is a vector bundle. Moreover, if we endow

the productMC ×A2 with the G -action defined by

G ×MC ×A2 MC ×A2

(g i
k , p , (x , y )) (p , (ξ−i

k x ,ξi
k y )).

← →

←[ →

where gk is the (fixed) generator of the cyclic group G (see subsection 1.1.1), it turns out that

the OMC×A2 -module fK is G -equivariant with respect to this action. The last observation,

together with Remark 1.6.7, implies that

fK ∼=OMC
[G ],

whose proof, at this point, is identical to the proof of [39, Lemma 9.4].
To prove the theorem, we will use the description of fK given in Corollary 1.6.5.

We know from Remark 1.0.13 that the tautological bundles RC and RCG
agree on the

complement UC of the exceptional locus ofMC . Moreover, we have, as a consequence of the

construction of fK and of Remark 1.6.6, isomorphisms

RC |UC

∼=RCG |UC

∼= fK|UC

∼=O ⊕k
UC

.

Now we show that the fibres ofRC and fK over the toric points ofMC are the same G -

constellations. This will be enough to prove the statement, because each chamber is uniquely

identified by its toric G -constellations. We split this part in several steps:
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STEP 0 Over each point of p ∈MC the fibre fKp is a G -equivariantC[x , y ]-module and, over each

origin 0 j ∈Uj the fibre fK0 j
is alsoT2-equivariant. This follows from the fact that the ideal

K j is generated by monomials and that the ideal I j is generated by G -eigenbinomials

(recall that the group G acts trivially on Uj ) of positive degrees in the variables a j , c j .

STEP 1 All the G -sFd associated to the toric fibres of fK are substairs of the C -stair ΓC . For this,

see Remark 1.6.2.

STEP 2 For all j = 1, . . . , k , the j -th toric G -constellation fK0 j
is irreducible. Let Γ j ⊂ ΓC be the

G -sFd associated to fK0 j
. Then, the G -constellation fK0 j

is irreducible if and only if Γ j is

connected.

First observe that, for a box b ∈ ΓC both the properties (A j ) and (C j ) implies that the

corresponding monomial mb belongs to (K j ∩ I j ) + (a j , c j ). This is true because, if

mb = xαy β , then

(1.6.4)
(A j )⇒ a j xα− j y β+k− j − xαy β ∈ K j ∩ I j ,

(C j )⇒ c j xα+ j−1 y β−k+ j−1− xαy β ∈ K j ∩ I j .

On the other hand, b ∈ ΓC ∖ Γ j if and only if mb ∈ (K j ∩ I j ) + (a j , c j ). In particular, by

construction, at least one of the following relations is true.

1. a j xα− j y β+k− j − xαy β ∈ K j ∩ I j ,

2. c j xα+ j−1 y β−k+ j−1− xαy β ∈ K j ∩ I j ,

3. a j c j xα−1 y β−1− xαy β ∈ K j ∩ I j .

Notice that b ∈ ΓC implies (see STEP 1) that (3) cannot hold true. Therefore, given b ∈ ΓC ,

it belongs to Γ j if and only if one among the two properties (A j ) and (C j ) holds for b .

Now, the connectedness of Γ j is a consequence of Lemma 1.6.11.

STEP 3 For all j = 1, . . . , k , the j -th toric G -constellation fK0 j
has width w( fK0 j

) = j . Let Γ j ⊂ ΓC
be, as in the previous step, the G -sFd associated to fK0 j

, and let xαy β , x γy δ be the

monomials in C[x , y ] ⊂C[a j , c j , x , y ] corresponding to the first and the last box of Γ j .

Suppose that, for some β + j −k ≤β ′ ≤β and γ− j +1≤ γ′ ≤ γwe have

xα+ j y β
′
, x γ

′
y δ+k− j+1 ∈ K j .

Then, the following relations

a j xαy β
′+k− j − xα+ j y β

′ ∈ K j ∩ I j ,

c j x γ
′+ j−1 y δ − x γ

′
y δ+k− j+1 ∈ K j ∩ I j ,

imply that

(1.6.5)
xα+ j y β

′ ∈ K j ∩ I j + (a j , c j ),
x γ
′
y δ+k− j+1 ∈ K j ∩ I j + (a j , c j ).

As a consequence of the relations 1.6.5, we have

w( fK0 j
)≤ j ,
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and,

h( fK0 j
)≤ k − j +1.

The equality w( fK0 j
) = j follows from the fact that, as per the previous steps, fK0 j

is an

irreducible toric G -constellation, hence

w( fK0 j
) +h( fK0 j

) = k +1.

STEP 4 As an immediate consequence of the previous step all the G -constellations fK0 j
, for

j = 1, . . . , k , are different to each other.

Now, the above listed properties imply that fK is the tautological bundleRC ′ of some chamber

C ′ ⊂Θgen which admits ΓC as C ′-stair and this, by Lemma 1.4.6, implies C ′ =C .

1.7 A recent proof of the conjecture

Very recently, a proof of the Craw–Ishii conjecture (see Conjecture 1.0.24) appeared in two

preprints [70, 71]. In particular, in [70], the abelian case is revisited and treated in dimension

higher than 3 and, in [70], the conjecture is proven in a non-abelian setting. Unfortunately,

there has been no time to take account of these results in this thesis. We use this section to

comment a little on these preprints and to relate them to [30].
The main result in [70] is the following.

Theorem 1.7.1. ([70, Theorem 5.2]) Let Y → X be a crepant resolution of a quotient singularity

X =An/G , for G < Sl(n ,C) abelian and finite. Then, there exists a generic stability condition

θ ∈Θgen such that the normalisation ofMθ and Y are isomorphic over X if and only if X admits

a family of G constellations which, outside the exceptional locus, agrees with the tautological

family over X and, over the exceptional divisor, has only irreducible G -constellations.

This result confirms the important role of irreducible G -constellations, as we mentioned

in Remark 1.0.16. In other words, Theorem 1.7.1 says that certain families of irreducible G -

constellations on X induce canonical isomorphisms with (the normalisation) of some moduli

spaces. This approach is very similar to the one we tried to prove Craw–Ishii’s conjecture. In-

deed, our idea was precisely to generalize Theorem 1.5.2 to the 3-dimensional and non-abelian

case in order to build families of (irreducible) G -constellations on the crepant resolutions of

X which, outside the exceptional locus, agrees with the tautological family over X .

The proof of Craw–Ishii’s conjecture is in [71].

Theorem 1.7.2 ([71, Theorem 4.1]). Let G ⊂ Sl(3,C) be a finite subgroup and let Y →A3/G be a

crepant resolution. Then, there is a generic stability condition θ ∈Θgen such that Y ∼=Mθ .

The technology used in the proof in Theorem 1.7.1 is different from that used in [71], and

it is more similar to that used in Craw–Ishii’s paper [15], where Conjecture 1.0.24 was stated.

It would be interesting in the future to combine the new ideas in [70, 71] and those in [30]
to work in higher dimensions. In that case, it is not true in general that there exists a crepant

resolution and, even in that case, the moduli spacesMθ , for θ ∈Θgen, may be singular. There-

fore, it is not possible to generalize Theorem 1.7.2 as it is stated. Using our approach, however,
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some generalisations may be obtained. Indeed, a generalisation of Theorem 1.5.2 without the

hypothesis of abelianity and without limitations on the dimension, would allow us to build

families of G -constellations with the properties in Theorem 1.7.1 on certain terminalisations

Y of the singularity X .

We hope that these families may also give isomorphisms with (the normalisation) of some

moduli spacesMθ for θ ∈Θ ∈gen.
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1.8 A crepant resolution for G =H168 < Sl(3,C)

As already mentioned in the introduction, the finite subgroups of Sl(3,C) are listed (see [72])
and they consists of some infinite families and some sporadic groups. Among the latter appears

the Klein group H168
∼= PSL(2,F7), denoted by (I) in [72], or, more precisely, a 3-dimensional

representation

H168
ρ
,−→ Sl(3,C).

In this section we will construct a crepant resolution of the singularityA3/H168 alternative

to the one constructed by Markushevich in [50]. Then we will compare them and we will

describe the series of flops that connect them.

In what follows, with abuse of notation, we will denote by H168 the image of the represen-

tation ρ.

1.8.1 The group and the singularity

A set of generators of H168 can be found, for example in [50, 64, 72]. For instance, one can

choose

g1 =





ξ 0 0

0 ξ2 0

0 0 ξ4



 , ξ= exp
�

2πi

7

�

;

g2 =





0 0 1

1 0 0

0 1 0



 ;

g3 =−
2
p

7





α β γ

β γ α

γ α β



 ,

α = sin
�

8π
7

�

,

β = sin
�

4π
7

�

,

γ = sin
�

2π
7

�

.

It turns out (see [50], where an exhaustive description of the singularity is given) that the ring

of invariantsC[A3]H168 has 4 generators and, as a consequence, the singularity X =A3/H168 is

a hypersurface singularity.

The equation of X is:

y 3+1728z 7+1008y z 4t−88y 2z t 2−60032z 5t 3+1088y z 2t 4+22016z 3t 6−256y t 7−2048z t 9−x 2,

it is singular along the curves:

C1 = {x = 27z 2−4t 3 = 3y +8z t 2 = 0} and C2 = {x , z 2+4t 3 = y −72z t 2}.

They have the property that, generically, outside a finite number of dissident points, are respec-

tively locally (analytically) isomorphic to a trivial family of A2 and of A3 surface singularities.2

Notice that the curves C1 and C2 are isomorphic to plane affine cusps and that they intersect

at their singular point which is also a dissident point for both the curves.

2In [60], this 3-fold singularities are called cDV singularities The word dissident is also taken from there.
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1.8.2 First change of coordinates

Before starting to blowup out the 3-fold singularity looking for a crepant resolution, let us act

with a change of coordinates that makes comfortable to perform the blowup. We act on A4 via

the following biholomorphism:

A4 A4

(x , y , z , t ) (x , y +18z t 2, z , t /2).

← →
ψ

←[ →

We have thus obtained a new equation 3 for X :

(1.8.1) 40z t 9−272z 3t 6−1568z 5t 3+2y t 7−1728z 7−248y z 2t 4−504y z 4t −32y 2z t 2−y 3+x 2.

Furthermore, after the change of coordinates, the description of the singularities of X is:

C1 =
�

x = t 3−54z 2 = 56z t 2+3y = 0
	

and C2 =
�

y = x = t 3+2z 2 = 0
	

.

1.8.3 Blowup of X along C2

We are now in position to perform the first blowup.

It was observed in [60] that the operation of blowing up families of DuVal singularities

(see Section 1.1.2) that are trivial outside some dissident points is a crepant operation, i.e.

the canonical sheaf of the blowup is the bullback of the canonical sheaf of the singularity.

Therefore, we can blowup indifferently C1 or C2. Clearly, different choices can, in principle,

lead to different crepant resolutions of singularities. Markushevich, in [50], started resolving X

by blowing up C1. Since we want a different resolution than the one in [50], we start by blowing

up the curve C2.

Before we begin, let us denote by g the element g = t 3+2z 2 ∈C[x , y , z , t ] and let us rewrite

the equation of X in the following more convenient way

x 2− y 3+40z g 3−32z (4z g + y t )2+2y t g 2.

Let X1 be the blowup of X with centre C2, i.e. X1 = BlC2
X and let ϵ1 : X1→ X be the blowup

map. Since C2 is a complete intersection, we can blow up it by applying [21, Prop. IV-25]. A

priori, the blowup X1 will be covered by 3 affine charts, but a careful analysis shows that, in

fact, two charts are enough to cover the whole X1.

Below, we give a local description of X1 on each chart.

Local pictures. We denote the two charts by U1 and U2.

• Description of U1. The variety U1 is the hypersurface ofA4, with coordinates a1, b1, c1, d1,

defined by the equation:

a 2
1 b1+ g1(40c1b 3

1 +2b 2
1 d1−1)−32c1(4c1b1+d1)

2b1 = 0,

3Equation (1.8.1) is actually the equation ofψ∗X , but, with abuse of notation, we omitted the pullback symbol

for the sake of readability.
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where g1 = d 3
1 +2c 2

1 , and the blowup map ϵ1,1 = ϵ1|U1
: U1→ X is:

U1 X











a1

b1

c1

d1





















a1[2g1b1(20c1b1+d1)−32(4c1b1+d1)2+a 2
1 ]

2g1b1(20c1b1+d1)−32(4c1b1+d1)2+a 2
1

c1

d1











.

← →
ϵ1,1

←[ →

We can now compute the singularities of U1 by applying the Jacobian criterion and we

find that U1 is singular along the union of the following three (smooth and rational)

disjoint curves

eC1,1 =
�

a1 = 108c1b 3
1 +1= 18c1b1+d1 = 0

	

, eC2,1 =
�

a1 = 32c1b 3
1 −1= 4c1b1+d1 = 0

	

,

C3,1 = {a1 = c1 = d1 = 0 } .

They are generically trivial families of DuVal singularities. In particular, eC1,1 and C3,1 are

families of A2 singularities, while eC2,1 is a family of A1 singularities. This is true because

C2 and C1 are respectively, generically trivial families of A3 and A2 singularities, while,

after excluding a finite number of points, the singularities of U1 along C3,1 are locally

(analytically) of the form a 2
1 b1+2c 2

1 +d 3
1 which is a trivial family of A2 singularities.

The exceptional divisor of ϵ1,1 is the surface E1 ⊂U1 defined as follows

E1 =
�

g1 = a 2
1 −32c1(4c1b1+d1)

2 = 0
	

.

It is a non-normal surface singular along the curves eC2,1 and C3,1.

• Description of U2. The variety U2 is the hypersurface ofA4, with coordinates a2, b2, c2, d2,

defined by the equation:

a 2
2 + g2(40c2+2b2d2− b 3

2 )−32c2(4c2+ b2d2)
2 = 0,

where g2 = d 3
2 +2c 2

2 , and the blowup map ϵ1,2 = ϵ1|U2
: U2→ X is:

U2 X

(a2, b2, c2, d2) (a2g2, b2g2, c2, d2).

← →
ϵ1,2

←[ →

The chart U2 is singular along the (smooth and rational) curves

eC1,2 =
�

a2 = b 2
2 −6d2 = b 3

2 +108c2 = 0
	

, eC2,2 =
�

a2 = b 2
2 +8d2 = b 3

2 −32c2 = 0
	

,

C3,2 = {a2 = c2 = d2 = 0 } .

Notice that they intersect, two by two, at the origin (0, 0, 0, 0) ∈A4 and that they are two

families of A2 singularities ( eC2,2 and C3,2) and one A1 singularities ( eC1,2) trivial outside

some dissident points. This can be understood, for instance, from the other chart.
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Finally, the exceptional locus of ϵ1,2 is the surface

E2 =
�

g2 = a 2
2 −32c2(4c2+ b2d2)

2 = 0
	

.

It is a non-normal surface singular along eC2,2 ∪C3,2.

Remark 1.8.1. Basically we will use the chart without dissident points, where the families

of singularities are trivial, to understand what kind of singularity we have. The other chart

contains the information on how the singularities interplay and therefore the interesting

information on the blowup and on the relationship between the exceptional dividers is all

there. Since the blowup of a trivial family of DuVal singularities is well understood, in the next

section, we will show only the blowup of the chart U2, where the families of singularities are

nontrivial.

Similarly, in the remaining sections of this chapter, we will only show the blowup of the

charts in which nontrivial families of DuVal singularities appear.

1.8.4 Blowup of X1 along C3

Let X2 be the blowup of X1 along C3 and let ϵ2 : X2→ X and ι2 : X2→ X1 be the blowup maps.

As explained in Remark 1.8.1, in order to understand the crepant resolution is enough to study

the open subset of X2 defined as eU2 =BlC3,2
U2. We can apply again [21, Prop. IV-25] and, after a

direct computation we discover that eU2 is covered by two affine charts W1, W2 that we describe

below.

Local pictures. As above, we proceed with a local description of eU2 =W1 ∪W2.

• Description of W1. The variety W1 is the hypersurface ofA4, with coordinatesα1,β1,γ1,δ1,

defined by the equation:

α2
1+2γ2

1δ
4
1β1−γ1δ

3
1β

3
1 +40γ2

1δ
3
1 −32γ1δ

2
1β

2
1 −252γ1δ1β1−2β3

1 −432γ1 = 0,

and the blowup map ι2,1 = ι2|W1
: W1→U2 is:

W1 U2 ⊂ X1

(α1,β1,γ1,δ1) (γ1α1,β1,γ1,γ1δ1).

← →
ι2,1

←[ →

By applying the Jacobian criterion, one finds that the chart W1 is singular along the

(smooth and rational) disjoint curves

e

eC1,1 =
�

α1 =δ1β1+18= 108γ1+β
3
1 = 0

	

, e

eC2,1 =
�

α1 =δ1β1+4= 32γ1−β3
1 = 0

	

.

In particular, by construction, eeC1,1 is a (generically) trivial family of A2 singularities, while
e

eC2,1 is a (generically) trivial family of A1 singularities.

The exceptional locus of the partial resolution ϵ2,1 = ϵ2|W1
: W1→ X is the union of the

the following two surfaces:

F1 = Exc(ι2,1) =
�

γ1 = 2β3
1 −α

2
1 = 0

	

and eE1 =
�

δ3
1γ1+2=α2

1δ
3
1 +64(4+β1δ1)

2 = 0
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Notice that they don’t intersect, eE1∩F1 = ; and that eE1 is the strict transform, via ι2 of E2.

Moreover, we have

Sing(F1) =
�

α1 =β1 = γ1 = 0
	

and Sing( eE1) =
e

eC2,1.

• Description of W2. The variety W2 is the hypersurface ofA4, with coordinatesα2,β2,γ2,δ2,

defined by the equation:

−2γ2
2β

3
2 −432γ3

2δ2−252γ2
2δ2β2−32γ2δ2β

2
2 −δ2β

3
2 +40γ2δ

2
2 +2δ2

2β2+α
2
2 = 0

and the blowup map ι2,2 = ι2|W2
: W2→U2 is:

W2 U2 ⊂ X1

(α2,β2,γ2,δ2) (α2δ2,β2,γ2δ2,δ2).

← →
ι2,2

←[ →

Again by applying the Jacobian criterion, one finds that the chart W2 is singular along

two (smooth and rational) curves, namely

e

eC1,2 =
�

α2 = 18γ2+β2 = 54γ2
2−δ2 = 0

	

and e

eC2,2 =
�

α2 = 4γ2+β2 = 2γ2
2+δ2 = 0

	

.

They intersect at the origin (0, 0, 0, 0) ∈A4 and again, outside some dissident points (e.g.

their intersection), they are a family of A2 singularities and A1 singularities respectively.

The exceptional locus of the partial resolution ϵ2,2 = ϵ2|W2
: W2→ X is the union of the

the following two surfaces:

F2 = Exc(ι2,2) =
�

δ2 = 2γ2
2β

3
2 −α

2
2 = 0

	

and eE2 =
�

α2
2+64γ3

2(4γ2+β2)
2 =δ2+2γ2

2 = 0
	

.

They intersect along the β2-axis, i.e. F2 ∩ eE2 =
�

α2 = γ2 =δ2 = 0
	

= L . Moreover, the

β2-axis is also a common singularity for the exceptional divisors and we have:

Sing(F2) = L ∪
�

α2 =β2 =δ2 = 0
	

and Sing( eE2) =
e

eC2,2 ∪ L .

1.8.5 Second change of coordinates

We focus on the chart W2, where all the complexity of the singular variety X2 is encoded. Indeed,

on the other charts that we have produced, X2 has only trivial families of DuVal singularities

(see Remark 1.8.1). Before to proceed, we act, for the second time, with a change of coordinates

ϕ on A4. This will produce nicer equations for the involved varieties.

A4 A4

(α2,β2,γ2,δ2)
�

2
7α2, 2

7 (9β2−2γ2),
1
7 (γ2−β2),

δ2
7 −2

�

γ2−β2
7

�2�

.

← →
ϕ

←[ →

The new equation for W2 is now

64β5
2 −192β4

2γ2+192β3
2γ

2
2−64β2

2γ
3
2−16β3

2δ2+88β2
2γ2δ2+26β2γ

2
2δ2+β2δ

2
2−8γ2δ

2
2−7α2

2 = 0,
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and we can rewrite the singualrities and the exceptional divisors of W2 as follows:

e

eC1,2 =
�

α2 = γ2 =δ2−8β2
2 = 0

	

, e

eC2,2 =
�

α2 =β2 =δ2 = 0
	

and

F2 =
�

2δ2(9β2−2γ2)
3−49α2

2 = 7δ2−2(γ2−β2)
2 = 0

	

, eE2 =
�

δ2 = 7α2
2+64β2

2 (γ2−β2)
3 = 0

	

Finally, in this new coordinates, we have:

eE2 ∩ F2 =
�

α2 = γ2−β2 =δ2 = 0
	

= L

and

Sing(F2) = L ∪
�

α2 = 2δ2−7β2
2 = 9β2−2γ2 = 0

	

,

Sing( eE2) =
e

eC2,2 ∪ L ,

1.8.6 Blowup of X2 along e

eC2

In practice (see Remark 1.8.1), instead of computing the whole ι3 : X3 = Bl
e

eC2
→ X2, we will

perform the blowup fW2 of W2 along e

eC2,2. Again fW2 is covered by two affine charts that we will

denote by T1, T2 and we will describe in next section. We shall denote by ϵ3 : X3→ X the partial

resolution map.

Local pictures We describe now fW2 = T1 ∪T2.

• Description of T1. The variety T1 is the hypersurface ofA4, with coordinatesλ1,µ1,ν1,χ1,

defined by the equation:

−16ν2
1(25µ1−4ν1)− (8µ1−χ1)

2(µ1−8ν1)−2ν1(8µ1−χ1)(20µ1−13ν1) +7λ2
1 = 0

and the blowup map ι3,1 = ι3|T1
: T1→W2 is:

T1 W2 ⊂ X2

(λ1,µ1,ν1,χ1) (λ1µ1,µ1,ν1,χ1µ1).

← →
ι2,1

←[ →

It is a 3-fold singular along the curve

e

e

eC1,1 =
�

λ1 = ν1 =χ1−8µ1 = 0
	

,

which, outside some dissident points is a family of A2 singularities.

The exceptional locus of the map ϵ3,1 = ϵ3|T1
is the union of the following surfaces:

G1 = Exc(ι3,1) =
�

µ1 = 64ν3
1−26ν2

1χ1+8ν1χ
2
1 +7λ2

1 = 0
	

, eeE1 =
�

χ1 = 7λ2
1−64(µ1−ν1)

3 = 0
	

eF1 =
�

343λ2
1−4(µ1−ν1)

2(729µ1−478ν1)−56ν1χ1(23ν1−7χ1) = 7µ1χ1−2(µ1−ν1)
2 = 0

	

.
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They intersect as follows:

G1 ∩ eeE1 =
�

µ1 =χ1 = 64ν3
1+7λ2

1 = 0
	

, G1 ∩ eF1 =
�

λ1 =µ1 = ν1 = 0
	

= Z1,

eF1 ∩ eeE1 =
�

λ1 =µ1−ν1 =χ1 = 0
	

= eL ,

and their singularities are:

Sing( eeE1) = eL , Sing(G1) =
�

λ1 =µ1 = ν1 =χ1 = 0
	

= {p},

Sing( eF1) = eL ∪
�

λ1 = 9µ1−2ν1 = 7ν1−9χ1 = 0
	

.

Notice that, since the equations of G1 can be put, via an appropriate change of coordi-

nates, in the form

µ1 =λ
2
1−ν1(ν

2
1−µ

2
1) = 0,

the point p is a DuVal singularity of type D4.

• Description of T2. The variety T2 is the hypersurface ofA4, with coordinatesλ2,µ2,ν2,χ2,

defined by the equation:

64µ5
2χ

3
2−192µ4

2ν2χ
2
2+192µ3

2ν
2
2χ2−64µ2

2ν
3
2−16µ3

2χ
2
2+88µ2

2ν2χ2+26µ2ν
2
2−7λ2

2+µ2χ2−8ν2 = 0

and the blowup map ι3,2 = ι3|T2
: T2→W2 is:

T2 W2 ⊂ X2

(λ2,µ2,ν2,χ2) (λ2χ2,µ2χ2,ν2,χ2).

← →
ι3,2

←[ →

The variety T2 is singular along the curve

e

e

eC1,2 =
�

λ2 = ν2 = 8µ2
2χ2−1= 0

	

.

In this chart, we don’t see the strict transform of E ⊂ X1 and the exceptional locus is the

union of the following surfaces

G2 = Exc(ι3,2) =
�

χ2 = 64µ2
2ν

3
2−26µ2ν

2
2+7λ2

2+8ν2 = 0
	

eF2 =
�

2(µ2χ2−ν2)
2−7χ2 = 280µ2

2ν2χ2−182µ2ν
2
2−7λ2

2+729µ2χ2−8ν2 = 0
	

which intersect along:
eF2 ∩G2 =

�

λ2 = ν2 =χ2 = 0
	

= Z2.

Finally, the singularities of the prime divisors are:

Sing( eF2) =
�

λ2 = 7µ2ν2−9= 7µ2
2χ2−2= 0

	

, Sing(G2) = ;.
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1.8.7 Third change of coordinates

We focus now on the chart T1 and we act for the third time with a biholomorphism ϑ. Again,

we recall (see Remark 1.8.1), that this is enough to understand the whole partial resolution.

The change of coordinates ϑ of A4 is defined as follows:

A4 A4

(λ1,µ1,ν1,χ1) (λ1,µ1/2,ν1/2,χ1+4µ1).

← →ϑ

←[ →

and the new equation for T1 is:

µ1(10ν1−χ)2−ν1(16ν2
1−13ν1χ1+8χ2

1 )−14λ2
1 = 0.

The new equations of the objects in the previous section, with respect to the new coordinates,

are:

Sing(T1) =
e

e

eC1,1 =
�

λ1 = ν1 =χ1 = 0
	

,

G1 =
�

µ1 = 16ν3
1−13ν2

1χ1+8ν1χ
2
1 +14λ2

1 = 0
	

, eeE1 =
�

4µ1+χ1 = (4ν1+χ1)
3+56λ2

1 = 0
	

,

eF1 =
�

27µ2
1+2µ1ν1−ν2

1+7µ1χ1 =µ1(10ν1−χ1)
2−16ν3

1+13ν2
1χ1−8ν1χ

2
1 −14λ2

1 = 0
	

,

G1 ∩ eeE1 =
�

χ1,=µ1 = 8ν3
1+7λ2

1 = 0
	

, G1 ∩ eF1 =
�

λ1 =µ1 = ν1 = 0
	

= Z1,

eF1 ∩ eeE1 =
�

λ1 =µ1−ν1 =χ1+4µ1 = 0
	

= eL ,

Sing( eeE1) = eL , Sing(G1) =
�

λ1 =µ1 = ν1 =χ1 = 0
	

= {p},

Sing( eF1) = eL ∪
�

λ1 = 2χ1+ν1 = 4χ1+9µ1 = 0
	

.

Recall that the point p is a DuVal singularity of type D4.

1.8.8 The last blowup

The last step consists of the blowup of X3 with centre
e

e

eC1 =
e

e

eC1,1 ∪
e

e

eC1,2 ⊂ X3. As usual, we will

focus on the chart where all the mutual intersections of the exceptional divisors occur. In

practice, we will cover Bl
e

e

eC1,1

T1 with two charts S1 and S2.

Local Pictures Both charts are smooth, and we describe them as hypersurfaces Si ⊂A4, with

coordinates xi , yi , zi , ti for i = 1,2. In the following table, that lists their main properties, we

will omit the indices of the variables for the sake of readability.
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S1

−y (t −10)2+ z (8t 2−13t +16) +14x 2 = 0

(x , y , z , t ) 7→ (x z , y , z , t z )

H1 = Exc(ι4,1) =

(

z = 0

y (t −10)2−14x 2 = 0

eG1 =

(

y = 0

8z t 2+14x 2−13z t +16z = 0

e

e

eE1 =

(

z t +4y = 0

z (t +4)3+56x 2 = 0

e

eF1 =

(

y (t−10)2−(8t 2−13t+16)z
14 − x 2 = 0

(z − y )2−7y (z t +4y ) = 0

H2 = Exc(ι4,2) =

(

t = 0

y (10z −1)2−14x 2 = 0

eG2 =

(

y = 0

16z 3t −13z 2t +14x 2+8z t = 0

e

e

eE2 =

(

4y + t = 0

t (4z +1)3+56x 2 = 0

e

eF2 =

(

y (10z−1)2−z t (16z 2−13z+8)
14 − x 2 = 0

(z t − y )2−7y (4y + t ) = 0

Sing(H1) = { x = z = t −10= 0 }=D1

Sing( eG1) =
�

p1, p2

	

two A1 singularities

Sing(
e

e

eE1) =
�

x = y − z = t +4= 0
	

= eeL1

Sing( eeF1) =
e

eL1 ∪
�

x = y = z = 0
	

∪
�

x = 9y −2z = 2t +1= 0
	

Sing(H2) = { x = t = 10z −1= 0 }=D2

Sing( eG2) =
�

p1, p2

	

∪
�

p3

	

three A1 singularities

Sing(
e

e

eE2) =
�

x = 4y + t = 4z +1= 0
	

= eeL2

Sing( eeF2) =
e

eL1 ∪
�

x = y = t = 0
	

∪
�

x = 9y +4t = z +2= 0
	

H1 ∩ eG1 =
�

x = y = z = 0
	

=M1

H1 ∩ eeF1 =M1

H1 ∩
e

e

eE1 =M1

eG1 ∩ eeF1 =M1

eG1 ∩
e

e

eE1 =M1 ∪
�

y = t = 7x 2+8z = 0
	

e

eF1 ∩
e

e

eE1 =
e

eL1 ∪M1

H2 ∩ eG2 =
�

x = y = t = 0
	

=M2

H2 ∩ eeF2 =M2

H2 ∩
e

e

eE2 =M2

eG2 ∩ eeF2 =M2 ∪
�

x = y = z = 0
	

eG2 ∩
e

e

eE2 =M2

e

eF2 ∩
e

e

eE2 =
e

eL2 ∪M2

S2

−y (10z −1)2+16z 3t −13z 2t +8t z +14x 2 = 0

(x , y , z , t ) 7→ (x t , y , z t , t )

EQUATIONS

CHARTS

BLOWUP MAPS

EXCEPTIONAL LOCI

SINGULARITIES

INTERSECTIONS

Remark 1.8.2. Both charts S1,S2 are isomorphic to A3. For instance, one can check that the

map

A3 S1

(a , b , c )
�

a , 12
73 a 2c + 18

73 b c 2+ 47
722 a 2+ 27

227 b c + 9
2 b , 3

732 a 2c + 9
2273 b c 2− 1

49 a 2, c +10
�

.

← →

←[ →

is an isomorphism.

Global picture The crepant resolution X4 =Bl
e

e

eC1

X3 has four exceptional prime divisors, each

coming from a blowup. In particular,
e

e

eE , eeF , eG and H are the respective (strict transforms of

the) exceptional divisors of ϵ1, ι2, ι3, ι4.
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We describe now these divisors. In Figure 1.25, a real version of the exceptional divisor of

some open subset of S1 ∪S2 is depicted. We will choose the notation consistently with respect

to the above table.

• The exceptional divisor
e

e

eE is the strict transform, via ι4◦ι3◦ι2 : X4→ X1, of the exceptional

divisor E . It is singular along the curve eeL . Locally, near eeL ∖ {p}, the divisor
e

e

eE is a trivial

family of cusps. The restriction of the resolution map ϵ4 to
e

e

eE ,

ϵ4| e
e

eE
:
e

e

eE →C2,

is, outside the singularity of C2, a trivial family of projective singular non-degenerate

conics (pairs of incident lines). Finally,
e

e

eE intersect eeF along the curves eeL and M .

• The exceptional divisor eeF is the strict transform, via ι4 ◦ ι3 : X4→ X2, of the exceptional

divisor F . It is singular along the curves eeL , M , N . Locally, near eeL ∖ {p}, the divisor eeF is a

trivial family of nodes, while, near (M ∪N )∖ {p}, it is a family of cusps. The restriction

of the resolution map ϵ4 to e

eF ,

ϵ4| e
e

eF
: eeF →{0},

is constant.

• The exceptional divisor eG is the strict transform, via ι4 : X4 → X3, of the exceptional

divisor G . The restriction of ι4, ι4| eG : eG →G is a partial resolution of the D4 singularity of

G . In particular ι4| eG agree with the blowup BlSing(G )G and it is well known that eG has one

irreducible exceptional divisor M over which three A1 singularities lie, namely p1, p2, p3.

Now, the restriction

ϵ4| eG : eG →C2

is, outside the singularity of C2 a trivial family of projective lines, while, as expected,

again outside the singularity of C2, the restriction

ϵ4| eG∪E : eG →C2

is a family of chains of three projective lines. Finally, eG intersects
e

e

eE along the curves M

and V , it intersect eeF along the curves M and eZ and it intersects the divisor H along M .

• The divisor H is the exceptional divisor of the map ι4. It is a Whitney umbrella, i.e. it

is isomorphic to the surface A =
�

((α,β ), [u : v ]) ∈A2×P1
�

�α2u =β2v
	

. It intersects all

the others exceptional divisors along the curve M and it is singular along the curve D .

Finally, the restriction

ϵ4|H : H →C1

is, outside the singularity of C1 a trivial family of nodes (incident lines).
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Conclusions. Now that we have this explicit description of a resolution X4, we can study

the sequence of flops that connect X4 and the crepant resolution X 4 built by Markushevich

in [50]. Moreover, since we know from [71] that Craw–Ishii’s conjecture (Conjecture 1.0.24) is

true, we can look for the chamber C ⊂ Θgen such that X4
∼=MC . We leave this study for the

future, and here we simply give the correspondence between the exceptional divisors of X4

and those of X 4. The existence of this correspondence is a consequence of the fact that all

crepant resolutions are isomorphic in codimension 1.

The correspondence goes as follows.

• The divisor
e

e

eE corresponds to the divisor of X4 coming from the 3-rd blowup in [50],

• the divisor eeF corresponds to the divisor of X4 coming from the 2-nd blowup in [50],

• the divisor eG corresponds to the divisor of X4 coming from the 4-th blowup in [50],

• the divisor H corresponds to the divisor of X4 coming from the 1-st blowup in [50].
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V

e

eL

e

eF

N

eZ

M

H

D

e

e

eE

eG

p3

p2

p1

Figure 1.25. A qualitative real version of Exc(ϵ4|V ) for some V ⊂ S1 ∪S2.



Chapter 2

On the Behrend function and the

blowup of some fat points

76



CHAPTER 2. ON THE BEHREND FUNCTION AND THE BLOWUP OF SOME FAT POINTS 77

2.0 Overview of the topic

Let X be a scheme of finite type over the fieldC. One of the (arguably few) intrinsic geometric

objects attached to X is a certain cone stack CX → X , called the intrinsic normal cone, con-

structed by Behrend–Fantechi in their seminal work [6]. This construction was a breakthrough

in enumerative geometry, for it opened the way to a rigorous definition of a cascade of invari-

ants that have been of central importance in algebraic geometry ever since: Gromov–Witten

invariants, Donaldson–Thomas invariants, stable pair invariants to name a few.

A few years after the intrinsic normal cone was born, Behrend [5] proved that any scheme

X of finite type over C carries a canonical constructible function

νX : X (C)→Z,

defined (cf. Section 2.1) as the local Euler obstruction of a canonical cycle cX ∈ Z∗(X ) called

the signed support of the intrinsic normal cone. This function is universally referred to as the

Behrend function, and it has the following remarkable property: whenever X is proper and

carries a perfect symmetric obstruction theory (in the sense of Behrend–Fantechi [7]), the

degree of the virtual fundamental class [X ]vir ∈ A0(X ) attached to the obstruction theory agrees

with the weighted Euler characteristic of X ,

χ(X ,νX ) =
∑

n∈Z
nχ(ν−1

X (n )),

the ‘weight’ being precisely the Behrend function [5]. This result allowed algebraic geometers

to compute a large number of enumerative invariants, previously inaccessible, attached to

moduli spaces X satisfying the assumptions of Behrend’s theorem. See e.g. [67, 55] for some

background and references related to this subject.

Of course, knowing the precise values of the Behrend function is a more refined information

than knowing just the weighted Euler characteristic. Unfortunately, the Behrend function is

quite elusive. We refer the reader to the original papers [5, 7] for its main properties, some

of which are recalled in Section 2.1. First of all, it is an invariant of singularities, in the sense

that it pulls back along étale maps; in particular, it is sensitive to the scheme structure. It

satisfies νX (p ) = (−1)dimp X if p is a smooth point of X . When X is a critical locus, i.e. a scheme

of the form V (d f )⊂U , for some regular function f on a smooth scheme U , the function νX

agrees with the Milnor function of (U , f ). See Example 2.2.1 for more details. Not much more

is known about the Behrend function in general. See Open problem G for a hard open problem

in Donaldson–Thomas theory, related to the Behrend function and also to the geometry of

Quot schemes.

As mentioned above, the Behrend function has a crucial role in those enumerative theories

where the moduli spaces involved carry a symmetric obstruction theory. This is for instance the

case of Donaldson–Thomas theory (DT theory, for short), an enumerative theory designed to

‘count’ sheaves on smooth 3-folds [69]. If X is a moduli space of stable sheaves on a projective

Calabi–Yau 3-fold, then the expected dimension of X is 0. When X really has dimension 0, it is

equal to a disjoint union X1⨿· · ·⨿Xe where each X i is a fat point, the main object of study in

this thesis. That is, we have X = X1⨿· · ·⨿Xe where X i is a fat point. If X i is reduced for all i ,
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then the DT invariant is just the number of points, namely e . But in the general case, the DT

invariant is

χ(X ,νX ) =
e
∑

i=1

νX i
,

which is one motivation for the interest in the computation of the Behrend number of a fat

point. Even though a moduli space as above is rarely 0-dimensional, there are examples where

this actually happens, see e.g. [69, Thm. 3.55 and § 4], but also [67, Ex. 8.1] and [68, Thm. 1.1].
We conclude the introduction with a challenging open problem in DT theory.

Open Problem G. Fix integers r ≥ 1 and n ≥ 0, and let QuotA3 (O ⊕r , n ) be the Quot scheme

parametrising length n quotients of the trivial sheaf O ⊕r on A3, a key character in DT theory

[62, 22]. As proved in [4] (see [7] for the r = 1 case), there is an identity

χ(QuotA3 (O ⊕r , n ),ν) = (−1)r nχ(QuotA3 (O ⊕r , n )),

and the value of the Behrend function at a torus-fixed quotient p = [O ⊕r ↠ T ], with respect to

the natural (C×)3+r -action on the Quot scheme, is

ν(p ) = (−1)r n .

However, it is not known whether ν is constantly equal to (−1)r n . Its constancy would show

that the Quot scheme mentioned above is generically reduced, which is currently unknown

even for r = 1, i.e. in the case of the Hilbert scheme of points Hilbn (A3).
In dimension N > 3, the question of the reducedness of QuotAN (O ⊕r , n ) has already been

answered in the negative: see [43, § 6.5] for an example of a generically nonreduced component

of QuotAN (O ⊕r , 8), where r > 3. See also the recent work of Szachniewicz [66] for a proof of the

fact that Hilb13(A6) is nonreduced.

2.1 Definition and main properties of the Behrend function

Let X be a scheme of finite type over C, and let Con(X ) be the abelian group of (Z-valued)

constructible functions on X . In [5], Behrend constructs a canonical constructible function

νX : X (C)→Z,

nowadays referred to as the ‘Behrend function’ of X . It has been proven a powerful tool in

enumerative geometry, mainly because of the following remarkable property: whenever X is

proper and carries a symmetric perfect obstruction theory in the sense of Behrend–Fantechi

[7], one has an identity
∫

[X ]vir

1=χ(X ,νX ),

where the left hand side is the degree of [X ]vir ∈ A0(X ), the virtual fundamental class attached

to the obstruction theory, and the right hand side is the weighted Euler characteristic of X , the

‘weight’ being νX . Explicitly, for a constructible function γ ∈Con(X ), one defines

χ(X ,γ) =
∑

m∈Z
mχ(γ−1(m )).



CHAPTER 2. ON THE BEHREND FUNCTION AND THE BLOWUP OF SOME FAT POINTS 79

The Behrend function of a scheme X is defined as

νX = Eu(cX ),

where Eu: Z∗(X ) e→ Con(X ) is the local Euler obstruction, an isomorphism from cycles on X

to constructible functions on X , and cX is a canonical cycle attached to X . The definition of

Eu is recalled in [5] and is classical; we refer the reader to Jiang’s work [44] for more details on

local Euler obstruction (both in algebraic and analytic setting) and the Behrend function. Here

we recall how the cycle cX is defined. Suppose ( f : U → X , ι : U ,→M ) is a local embedding

for X , i.e. f is an étale morphism of C-schemes, and ι is a closed immersion into a smooth

C-scheme M . Let

π: CU /M →U

be the normal cone of this immersion. Note that CU /M is of pure dimension dim M . One can

form the cycle

cU /M =
∑

D⊂CU /M

(−1)dimπ(D )multD (CU /M ) [π(D )] ∈ Z∗(U ),

where the sum ranges over all irreducible components D of CU /M , and multD (CU /M ) denotes

the geometric multiplicity of the irreducible component D , namely the length

multD (CU /M ) = lengthOCU /M ,D
(OCU /M ,D )

of the artinian ring OCU /M ,D viewed as a module over itself, see e.g. [65, Tag 0DR4]. The cycles

cU /M naturally glue together along local embeddings to give a cycle cX ∈ Z∗(X ), i.e. there exists

a unique global cycle cX such that if ( f : U → X , ι : U ,→M ) is a local embedding as above, one

has cX |U = cU /M .

When X has a global embedding ι : X ,→M inside a smooth scheme M (e.g. when X is

quasiprojective), we can use the local embedding (idX , ι) and compute directly

(2.1.1) νX = Eu(cX ) =
∑

D⊂CX /M

(−1)dimπ(D )multD (CX /M )Eu ([π(D )]) .

Thus, when X is a fat point, say with embedding dimension N , we have a closed immersion of

X inside M =AN and Equation (2.1.1) becomes

(2.1.2) νX =
∑

D⊂CX /M

multD (CX /M ),

because the local Euler obstruction of [X ] is equal to 1 and dimπ(D ) = 0.

Notation 2.2. Occasionally, for the sake of readability, if R =C[x1, . . . , xN ]/I defines a fat point

X = Spec R ⊂AN , we shall write νR instead of νX , referring to the latter as the Behrend number

of I , since Spec R has only one point.

The Behrend function also has the following remarkable property, which has been exploited

several times for computations in Donaldson–Thomas theory, see e.g. [7, 4].

https://stacks.math.columbia.edu/tag/0DR4
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Example 2.2.1 ([56, Cor. 2.4 (iii)]). When X is a critical locus, i.e. X =V (d f ) is the zero scheme

of an exact 1-form on a smooth scheme M , one has the relation

(2.2.1) νX (p ) = (−1)dim M (1−χ(MF f ,p )),

where MF f ,p is the Milnor fibre of f at p ∈ X . The right hand side is, by definition, the value

of the Milnor function attached to (U , f ). The above situation includes the important case

f = 0 ∈ OM (M ), which yields X = M and the formula νM (p ) = (−1)dimp M . So the Behrend

function of a smooth point of a scheme is always ±1.

Ideally, it would be nice to compute the Behrend function of an arbitrary 0-dimensional

C-scheme. It is of course enough to perform the computation for fat points, since a finite

scheme is a disjoint union of fat points. The Behrend function of a fat point X is the constant

given by Equation (2.1.2), so our goal is to compute this constant exploiting such relation in a

large number of cases.

If X is a (proper) moduli space of sheaves on a Calabi–Yau 3-fold of dimension equal to the

expected dimension, namely 0, then X = X1⨿· · ·⨿Xe is a disjoint union of fat points X i , and the

non-reducedness of X i is a shadow of the existence of obstructed deformations for the object

parametrised by X i ,red ,→ X . Even though there is in general no control on these obstructions,

one can compute the Donaldson–Thomas invariant of X as the integer νX1
+ · · ·+νXe

.

2.2.1 A formula for the Behrend function in terms of blowup

Let X = Spec R be a fat point over C, and let X ,→U be a closed immersion into a smooth

affine scheme U . Let I ⊂ OU be the ideal defining this inclusion, so that R ∼= OU /I , and let

C = CX /U = Spec
�
⊕

d≥0 I d /I d+1
�

be the normal cone of X ,→U . As in Equation (2.1.2), we

have

(2.2.2) νX =
∑

D⊂C

lengthOC ,D

�

OC ,D

�

,

where the sum runs over all irreducible components D of C . This sum does not depend on

the particular embedding X ,→U we picked. If N = dimU , then we know that C is purely

N -dimensional, but we do not know how many irreducible components it has in general;

however, in the case where I ⊂C[x , y ] is a normal monomial ideal, the number of components

of the normal cone to the fat point X =V (I ) ,→A2 can be computed via Theorem 2.6.12. Note

that a natural choice for U is the affine spaceAN , where N = dimC(mR/m
2
R ) is the embedding

dimension of X = Spec R .

One first observation, towards the computation of νX via Equation (2.2.2), is that the

projective cone P (C ) sits in the projective completion P (C ⊕1) as the divisor ‘at infinity’, with

open dense complement equal to C . Hence we may rewrite Equation (2.2.2) as

(2.2.3) νX =
∑

D⊂C

lengthOP (C⊕1),P (D⊕1)

�

OP (C⊕1),P (D⊕1)
�

.

We notice that P (C ⊕1) is the exceptional divisor of a blowup, just as P (C ) is. We consider the

embedding X ,→AN ,→AN ×A1 =M , where the second map is induced by the inclusion of
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the origin 0 in A1. Then, we have an identity

EX M = P (C ⊕1)⊂BlX M ,

so by Equation (2.2.3) we have to determine the geometric multiplicities of the irreducible

components of the exceptional divisor EX M .

Equation (2.2.3) will be used to explicitly compute the Behrend function of curvilinear

schemes (see Example 2.2.5). However, for most of Chapter 2 the key relation that will be

exploited is the one contained in the following lemma.

Lemma 2.2.2. Let X ⊂AN be a fat point, with normal cone C =CX /AN = SpecS and associated

projective cone P = P (C ) = PS. Then the association D 7→ P (D ) is a bijective correspondence

between irreducible components of C and irreducible components of P , and there is an identity

νX =
∑

D⊂C

lengthOP (C ),P (D )

�

OP (C ),P (D )
�

.

In ‘blowup language’, this can be rephrased as

νX =
∑

D⊂C

multP (D ) EXAN .

Proof. For a general cone C = SpecS over an affine scheme X = Spec R , the irreducible com-

ponents D ⊂ C are themselves cones (over subvarieties of X ), each of which is given as

D =V (p) = Spec(S/p), where p⊂ S is a homogeneous minimal prime ideal. Thus D 7→ P (D ) is

a bijection.

If X ⊂AN is a fat point with normal cone C as in the statement, and D = V (p) ⊂ C is an

irreducible component, the local ring Sp is artinian, as well as the homogeneous localisation

S(p), and we have

lengthOC ,D

�

OC ,D

�

= lengthSp

�

Sp
�

= lengthS(p)

�

S(p)
�

= lengthOP (C ),P (D )

�

OP (C ),P (D )
�

,

which by Equation (2.2.2) implies the formula for νX .

2.2.2 The Behrend function of the easiest fat points

We conclude this section with some examples of computation of νX for X a fat point.

Example 2.2.3 (Critical loci). Let X = Spec R be a fat point that is also a critical locus, i.e. the

zero locus of an exact 1-form d f , for some function f ∈ OU (U ) on a smooth scheme U . In

particular, R is equal to the Jacobian ring attached to (U , f ), whose dimension as a C-vector

space is by definition the Milnor number µ f . In this case, one has

νX = length(X ).

Indeed, since Xred is just one point, X ,→U is isolated and so Equation (2.2.1) holds, giving

νX = (−1)m+1(1−χ(MF f )),
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where m +1 is the complex dimension of U and where MF f has the same homotopy type of a

bouquet of µ f spheres Sm ⊂Rm+1. This implies

χ(MF f ) =µ f · (1+ (−1)m )− (µ f −1) = 1+ (−1)mµ f ,

which indeed gives

νX = (−1)m+1(1− (1+ (−1)mµ f )) =µ f = dimC(R ) = length(X ).

Example 2.2.4 (Local complete intersections). Let X ⊂ AN be fat point that is also a local

complete intersection subscheme. Then CX /AN =NX /AN is the total space of a vector bundle

over X of rank N . Thus P (CX /AN ) is a PN−1-bundle over X , and as such it is irreducible, with

multiplicity equal to length(X ). So

νX = length(X ).

Example 2.2.5 (Curvilinear schemes). Fix an integer n > 0 and consider the curvilinear scheme

Xn = SpecC[t ]/t n . Then νXn
= n follows by both Example 2.2.3 and Example 2.2.4. We first

confirm this formula by means of Equation (2.2.2), as follows: for every d ≥ 0, the d -th graded

piece of the coordinate ring of CXn/A1 is isomorphic to Rn = C[t ]/t n as an Rn -module: if

I = (t n ), then

I d /I d+1 =



t nd , t nd+1, . . . , t nd+n−1
�

C
∼=Rn .

Thus
⊕

d≥0

I d /I d+1 =
⊕

d≥0

Rn · z d =C[t , z ]/t n ,

proving that

CXn/A1 =A1×Xn ,

which is irreducible with generic point (t )⊂C[z , t ]/(t n ) of length n . Alternatively, we could

have checked the formula νXn
= n through Equation (2.2.3) as follows. We can blow up Xn

inside M =A1×A1, obtaining the exceptional divisor

P (CXn/A1 ⊕1) =P

�

⊕

d≥0

(I , z )d /(I , z )d+1

�

=P

�

⊕

d≥0

�

Rn · z d ⊕
I

I 2
· z d−1⊕ · · ·⊕

I d−1

I d
· z ⊕

I d

I d+1

�

�

∼=P
�

Rn ⊕ (Rn · z ⊕Rn ·u )⊕ (Rn · z 2⊕Rn · z u ⊕Rn ·u 2)⊕ · · ·
�

=PRn [z , u ] =P1×Xn ,

which again is irreducible with generic point of length n .

The following is an instance of both Example 2.2.3 and Example 2.2.4.

Example 2.2.6. Set X = Spec R ⊂ AN , where R = C[x1, . . . , xN ]/(x
e1
1 , . . . , x eN

N ). Then, X is the

critical locus of the function AN →A1 sending

(x1, . . . , xN ) 7→
∑

1≤i≤N

1

ei +1
x ei+1

i .
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Thus by Example 2.2.3 we have

νX = length(X ) =
∏

1≤i≤N

ei .

Alternatively, this formula also follows from the multiplicativity of the Behrend function, proved

in general in [5, Prop. 1.5 (ii)].

So far we have only seen instances where the Behrend number of a fat point agrees with its

length. In general, the length is neither an upper bound nor a lower bound for the Behrend

number, as we shall see in greater detail by means of the core calculations of this chapter (see

e.g. Theorem 2.3.11, Theorem 2.3.13 and Remark 2.7.9 for a few instances of this fact). For

now, we present an example of a fat point with embedding dimension N = 2, that is neither a

critical locus nor a local complete intersection.

Example 2.2.7 (Power of maximal ideal). Fix an integer d > 1. Set X = Spec R , where R =
C[x , y ]/md . Here m= (x , y ) denotes, as ever, the maximal ideal of the origin in A2. We have a

commutative diagram

(2.2.4)

BlmA2 A2×P1

Blmd A2 A2×Pd

←- →

←→ g ←
-

→ id×v1,d

←- →

where v1,d : P1 ,→Pd is the Veronese embedding, sending P1 onto the rational normal curve of

degree d inside Pd . The vertical map g is an isomorphism, which by the commutativity of the

diagram commutes with the projections down to A2. It follows that, under this isomorphism,

the exceptional divisor E ⊂Blmd A2 corresponds to the preimage of X along ϵm : BlmA2→A2.

Now, as in Example 0.10.9, we can write

BlmA2 =
�

((x , y ), [u : v ])
�

� x v = y u
	

⊂A2×P1,

and, after fixing coordinates (u , y ) in the chart {v ̸= 0} ⊂BlmA2, the blowp map ϵm becomes

(u , y ) 7→ (y u , y ) in this chart. Therefore the pullback of X =V (md ) along ϵm|v ̸=0 is the scheme

cut out by the ideal

Jv = (y
d u d , (y d−1u d−1)y , . . . , (y u )y d−1, y d ) = (y d )⊂C[u , y ].

An identical calculation can be done in the chart u ̸= 0, where one finds the ideal Ju = (x d ) in

C[v, x ]. All in all, ϵ−1
m (X )⊂BlmA2 (which is isomorphic to E = EmdA2) is defined by the ideal

sheafJ d , whereJ is the ideal defining the (reduced) exceptional divisor in BlmA2. It is thus a

line with multiplicity d . Hence, by Lemma 2.2.2,

νX = lengthOE ,E

�

OE ,E

�

= d .

Note that, in this case, we have d = νX < length(X ) = (d +1)d /2.

The previous example can be generalised as follows.
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Proposition 2.2.8. Let I ⊂ A =C[x1, . . . , xN ] be an ideal of finite colength. Then, for any integer

d > 0, one has a canonical AN -isomorphism BlI d AN ∼=BlI AN , and an identity

νA/I d = d ·νA/I .

In particular, if I defines a local complete intersection subscheme of AN , then

νA/I d = d · ℓA/I = d ·dimC(A/I ).

Proof. The second identity follows from the first combined with Example 2.2.4. We have an iso-

morphism ofAN -schemes g : BlI AN
e→ BlI d AN , which is part of a larger diagram (constructed

along the same lines as Diagram 2.2.4): if we assume I is minimally generated by polynomials

f0, f1, . . . , fr ∈ A, then we have a commutative diagram

BlI AN AN ×Pr

BlI d AN AN ×P(
r+d

d )−1

←- →

←→ g ←
-

→ id×vr,d

←- →

where vr,d : Pr →P(
r+d

d )−1 is the Veronese embedding.

Now, if ϵd : BlI d AN → AN denotes the blowup morphism, Ed = EI dAN ⊂ BlI d AN is the

exceptional divisor embedded with ideal sheafId ⊂OBlI d AN , and the inclusion Spec A/I d ⊂AN

has normal cone Cd , we compute

νA/I d =
∑

D⊂Cd

multP (D )(Ed )

=
∑

D⊂Cd

multP (D )
�

V (ϵ−1
d (I

d ) · OBlI d AN )
�

=
∑

D⊂Cd

multg −1P (D )
�

V (ϵ−1
1 (I

d ) · OBlI AN )
�

=
∑

D⊂Cd

multg −1P (D )
�

V (I d
1 )
�

= d ·
∑

D⊂Cd

multg −1P (D )(E1)

= d ·
∑

D⊂C1

multP (D )(E1)

= d ·νA/I ,

as required.
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2.3 Towers and their Behrend functions

2.3.1 Towers and their basic properties

Before introducing towers, special ideals inC[x , y ] particularly suited for our calculations, we

quickly review some basics on curvilinear schemes.

We focus here on curvilinear schemes (cf. Definition 0.6.1) of length n supported at the

origin 0 ∈A2. These are defined by ideals I ⊂C[x , y ] of the form

I = ( f ) +mn ,

where f ∈m∖m2. Given such a polynomial f = a x + b y + c x 2+d x y + e y 2+ · · · , an explicit

isomorphismC[t ]/t n →C[x , y ]/I is given by sending t +(t n ) 7→ (a y −b x )+I . Such association

is an isomorphism because (a , b ) ̸= (0, 0)which follows from the condition f ∈m∖m2.

Definition 2.3.1. Let f ∈ C[x , y ] be any nonzero polynomial, and, for i ≥ 0, let fi be its

homogeneous part of degree i . We will denote by o ( f ) the order of f , i.e.

o ( f ) =min
�

i ∈N
�

� fi ̸= 0
	

.

Lemma 2.3.2 ([8, Prop. IV.1.1]). Let I = ( f ) +mn be a curvilinear ideal. Then, the polynomial f

can be chosen in one of the following forms: either

f (x , y ) = x + g x (y ),

where g x ∈C[y ] is such that o (g x )≥ 1 and deg(g x )< n, or

f (x , y ) = y + g y (x ),

where g y ∈C[x ] is such that o (g y )≥ 1 and deg(g y )< n.

Proposition 2.3.3. Let I = ( f )+mn ⊂C[x , y ] be a curvilinear ideal with n ≥ 2. Then, the blowup

BlI A2 has a Kleinian singular point of type An−1 (see Section 1.1).

Proof. By Lemma 2.3.2, we can suppose f = x+g x (y ) and, as a consequence, I = (x+g x (y ), y n ).
In particular, the sequence x + g x (y ), y n is a regular sequence. Thus, by [21, Prop. IV-25], we

have

BlI A2 =
�

((x , y ), [u : v ]) ∈A2×P1
�

� u f − v y n = 0
	

.

Now, an easy computation shows that the point ((0,0), [0 : 1]) is a Kleinian singularity of type

An−1.

The next definition introduces our main objects of study for this section.

Definition 2.3.4. We will say that an ideal K ⊂C[x , y ] is a tower of height is if there exists a

polynomial g x ∈C[y ] or g y ∈C[x ], of degree strictly smaller than is , and a strictly increasing

sequence of natural numbers 1≤ i1 < i2 < · · ·< is , such that

K =
s
∏

k=1

(x + g x (y ))+m
ik
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or

K =
s
∏

k=1

(y + g y (x ))+m
ik .

We will say that a tower is

(i) complete if ik = k for k = 1, . . . , s ,

(ii) monomial if g x = 0, in the first case, or if g y = 0, in the second case.

Example 2.3.5. Let 1≤ i1 < i2 < · · ·< is be a strictly increasing sequence of positive integers,

and let

K =
s
∏

k=1

(x ) +mik =
s
∏

k=1

(x , y ik )

be a monomial tower of height is , not necessarily complete. Then

(2.3.1) K =



x s , x s−1 y i1 , x s−2 y i1+i2 , . . . , x y

s−1
∑

j=1
i j

, y

s
∑

j=1
i j



 .

The associated Ferrers diagram is depicted in Figure 2.1 in the complete case.

...

...

· · ·

x s

x s−1 y

x s−2 y 3

x s−3 y 6

y

s
∑

i=1
i

x y

s−1
∑

i=1
i

Figure 2.1. The Ferrers diagram of a complete monomial tower of height s .

Lemma 2.3.6. The blowup ofA2 with centre an arbitrary tower K ⊂C[x , y ] is a normal surface.

Equivalently, every tower is a normal ideal.

Proof. We first observe that the isomorphism class of a subscheme X ⊂A2 defined by a tower

is completely determined by the sequence of positive integers 1 ≤ i1 < · · · < is . Indeed, if

K =
∏

1≤k≤s (x + g (y )) +mik , then the automorphism

(2.3.2)
A2 A2

(x , y ) (x − g (y ), y )

← →∼

←[ →
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induces an isomorphism between V (K ) ,→ A2 and V (K ′) ,→ A2, where K ′ is the monomial

tower
∏

1≤k≤s (x )+m
ik . On the other hand, the blowup ofA2 with centre a monomial tower

I ⊂C[x , y ] is normal, because the subsets AI ⊂N2 and QI ⊂Q2, defined as in Remark 0.10.3

and in Proposition 0.10.2 respectively, satisfy AI =QI ∩N2. The conclusion then follows from

Proposition 0.10.2.

2.3.2 Blowing up along towers

This subsection contains the key structural results that we will need for the calculation of the

Behrend function of a fat point X ⊂A2 cut out by a tower.

Proposition 2.3.7. Let s ≥ 1 be a positive integer and let Ks be the complete monomial tower

Ks =
s
∏

k=1

(x , y k ).

Then, the blowup BlKs
A2 factors as a sequence of blowups

X s X s−1 · · · X2 X1 A2←→
ϵs ←→

ϵs−1 ←→
ϵ3 ←→

ϵ2 ←→
ϵ1

where

X1 =Bl0A2,

Xk+1 =Bltk
Xk , k = 1, . . . , s −1.

Here, t1 is the toric point of Exc(ϵ1)⊂ X1 corresponding to the line {x = 0} and, for k = 2, . . . , s −1,

tk is the only toric point of Exc(ϵk )∖ ϵ−1
k (Exc(ϵk−1)).

In other words, X s and BlKs
A2 are canonically isomorphic as A2-schemes.

Proof. For the sake of readability, we set Ik = (x , y k ). The proof goes by induction on the height

s of the tower. The first nontrivial case is s = 2. We want to prove that there exists a canonical

isomorphism of A2-schemes ϕ : X2→BlK2
A2.

Lemma 0.2.1 implies that

BlK2
A2 ∼=Blϵ−1

1 (I2)·OX1
X1.

Recall (see [13, § 3.1]) that X1 is a toric surface covered by two toric charts Ui
∼=A2, for i = 0, 1,

with the property that, if we call ai , bi the toric coordinates on Ui , then the maps ϵ1|Ui
, for

i = 0, 1, take the the form

ϵ1

�

�

U0
(a0, b0) = (a0b0, b0)

ϵ1

�

�

U1
(a1, b1) = (a1, a1b1).

As a consequence

ϵ1

�

�

−1

U0
(I2) ·C[a0, b0] = (a0b0, b 2

0 ) = (b0) · (a0, b0),

ϵ1

�

�

−1

U1
(I2) ·C[a1, b1] = (a1, a 2

1 b 2
1 ) = (a1).
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Therefore, we conclude that ϵ−1
1 (I2) · OX1

=H1 ·H2 whereH1 ⊂ OX1
defines a Cartier divisor

andH2 ⊂OX1
defines a (reduced) toric point t1 ∈ X1. Thus, we have

BlH1·H2
X1
∼=Blt1

X1 = X2,

which concludes the proof of the base step.

Suppose now that we have a canonical isomorphism of A2-schemes ϕs : X s e→ BlKs
A2. We

need to construct a canonical isomorphism

ϕs+1 : X s+1 BlKs+1
A2.←→∼

Settingψs = ϵ1 ◦ · · · ◦ ϵs , we have a commutative diagram

X s+1 Blϕs (ts )BlKs
A2 BlKs+1

A2

X s BlKs
A2 A2

← →

ϕs+1

←

→ϵs+1

← →
ϕs

←
→ ϵϕs (ts )

←

→ ϵKs+1

← →
ϕs

← →

ψs

← →
ϵKs

where the mapϕs is an isomorphism by the base change properties of blowups [21, Prop. IV-21].
Now, we exploit the toric variety structure on X i , for all i ∈N. If N denotes the standard

2-dimensional lattice, then the variety X s can be constructed via the fan Σs in N ⊗ZR ∼=R2

depicted in Figure 2.2.

Σs =

2e1+ e2e1+ e2 s e1+ e2

· · ·
e2

e1

Figure 2.2. A fan realising the toric variety X s .

The variety X s is covered by s +1 smooth charts Uk = SpecSk
∼=A2 (see Section 1.1) with

toric coordinates ak and bk , more precisely we set

Sk =C[x y −k+1, x−1 y k ] =C[ak , bk ], 1≤ k ≤ s

Ss+1 =C[x y −s , y ] =C[as+1, bs+1].

As above, the mapsψs |Ui
: Ui →A2, for i = 1, . . . , s +1, have the explicit description

ψs

�

�

Uk
(ak , bk ) = (a

k
k b k−1

k , ak bk ), 1≤ k ≤ s

ψs

�

�

Us+1
(as+1, bs+1) = (as+1b s

s+1, bs+1).

Therefore, the ideal sheafψ−1
s (Is+1) · OX s

⊂OX s
is given, locally on each chart, by

ψs

�

�

−1

Uk
(Is+1) ·C[ak , bk ] = (a

k
k b k−1

k , a s+1
k b s+1

k ) = (a k
k b k−1

k )⊂ Sk , 1≤ k ≤ s

ψs

�

�

−1

Us+1
(Is+1) ·C[as+1, bs+1] = (as+1b s

s+1, b s+1
s+1 ) = (b

s
s+1) · (as+1, bs+1)⊂ Ss+1.
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As a consequence,ψ−1
s (Is+1) · OX s

=H1 ·H2 where, as above,H1 ⊂OX s
defines a Cartier divisor

on X s andH2 defines the reduced toric point ts ∈ Exc(ϵs )∖ϵ−1
s (Exc(ϵs−1)). Finally, the statement

follows by applying again Lemma 0.2.1.

Corollary 2.3.8. Let K be the complete tower K =
∏

1≤k≤s (x +g (y ))+mk , where g (y ) ∈C[y ] is a

polynomial of order o (g )≥ 1 and degree deg(g )< s . Then, the blowup ϵK : BlK A2→A2 factors

as a sequence of blowups

Blps−1
Blps−2

· · ·Blp1
Bl0A2 · · · Blp1

Bl0A2 Bl0A2 A2←→
ϵs ←→

ϵ3 ←→
ϵ2 ←→

ϵ1

where p1 ∈ Exc(ϵ1) and, for all k = 2, . . . , s −1, the point pk belongs to Exc(ϵk )∖ ϵ−1
k Exc(ϵk−1).

Proof. It is enough to combine Proposition 2.3.7 with the automorphism (2.3.2) introduced in

the proof of Lemma 2.3.6.

Remark 2.3.9. The above corollary, combined with Lemma 2.3.6, also allows one to handle

the blowup of A2 along any tower

K =
s
∏

k=1

(x + g (y ))+mik .

Indeed, given the complete tower K defined by

K =
is
∏

k=1

(x + g (y ))+mk ,

the blowup B =BlK A2 can be obtained by contracting some projective lines in B =BlK A2.

In a little more detail, if we call ϵ : B → A2 and ϵ̄ : B → A2 the blowup maps, the same

computations as in the proof of Proposition 2.3.7 show that ϵ̄−1(K ) ·OB defines a Cartier divisor

on B . Therefore, there is a canonical birational morphism of A2-schemes

ϕ : B → B

which has connected fibres by Zariski’s Main Theorem (Theorem 0.9.2) (which we may apply

since B is normal, by Lemma 2.3.6). In particular, the map ϕ is an isomorphism outside

from the respective exceptional loci of B and B and it may contract some of the irreducible

components of Exc(B ).
Since any tower is isomorphic to a monomial tower (see the proof of Lemma 2.3.6), in order

to understand which rational projective curves of B are contracted by ϕ, we can first suppose

that K is a monomial tower. Then, the usual toric geometry methods apply. A fan Σ for the

toric variety B consists of the following s +1 maximal cones

σ0 = 〈e2, i1e1+ e2〉 ,

σ1 = 〈i1e1+ e2, i2e1+ e2〉 ,
...

σs−1 = 〈is−1e1+ e2, is e1+ e2〉 ,

σs = 〈is e1+ e2, e1〉 .
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In particular, if we put i0 = 0, the conesσ j , for j = 0, . . . , s −1, correspond either to a smooth

point, if i j+1 − i j − 1 = 0, or to a Kleininian singularity of type Ai j+1−i j−1 otherwise, whereas

the coneσs corresponds to a smooth point of B . Now, a fan Σ for the toric variety B has the

following maximal cones

τ0 = 〈e2, e1+ e2〉 ,

τ1 = 〈e1+ e2, 2e1+ e2〉 ,
...

τis−1 = 〈(is −1)e1+ e2, is e1+ e2〉 ,

τis
= 〈is e1+ e2, e1〉 .

Moreover, the fact that each cone τi of Σ is contained in some cone σ j of Σ implies that

there is a morphism of A2-schemes from B to B which, by universality, must coincide with

ϕ. Therefore, the lines contracted by ϕ are the lines in B corresponding to the rays of Σ not

belonging to Σ.

Notice also that, if one knows how to compute the Behrend number of a complete tower

(which we do, as we shall see in Theorem 2.3.11), then, thanks to this remark, one also knows

how to compute the Behrend number of an arbitrary tower. To see this, consider a curve C ⊂ B

which is not contracted by ϕ. Then, since, when restricted to the complement U ⊂ B of the

contracted lines, ϕ is an isomorphism, we have the identity

multϕ(C )(V (ϵ
−1(K ) · OB )) =multC (V (ϵ̄

−1(K ) · OB )).

The following example provides a generalisation of [21, Prop. IV-40].

Example 2.3.10. The easiest non-complete tower one can think of is given by a curvilinear

ideal I = (x )+mn = (x , y n )with n ≥ 2. We can deduce, from the above remark, an alternative

way to Proposition 2.3.3, to prove that BlI A2 has an (isolated) singularity of type An−1.

Let K be the monomial complete tower

K =
n
∏

k=1

(x ) +mk =
n
∏

k=1

(x , y k ).

Then, Proposition 2.3.7 implies that the exceptional locus of the map ϵK : BlK A2 → A2 is a

chain of n rational smooth projective curves

E1 ∪E2 ∪ · · · ∪En ⊂BlK A2

and, the classical blowup formula (see [3, I-§ 9, Thm. (9.1)]), implies:

E 2
k =

(

−2 if k = 1, . . . , n −1

−1 if k = n .

Now, as a consequence of Remark 2.3.9, the canonical projective birational morphism

ϕ : BlK A2→BlI A2
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contracts the curves

E1, . . . , En−1,

and, the characterisation of Kleinian singularities (see [3, III-§ 3, Prop. (3.4)]), implies that

BlI A2 has an Kleinian singularity of type An−1.

2.3.3 The Behrend function of a tower

We are ready to tackle the calculation of the Behrend number of a tower. We start with the

complete case.

Theorem 2.3.11. Let Ks ⊂C[x , y ] be a complete tower of height s . Then

ℓC[x ,y ]/Ks
=

�

s +2

3

�

,(2.3.3)

νC[x ,y ]/Ks
=

s (s +1)(2s +1)
6

.(2.3.4)

In particular ℓC[x ,y ]/Ks
<νC[x ,y ]/Ks

for all s > 1.

Proof. Equation (2.3.3) follows directly from Example 2.3.5 together with the equality1

�

s +2

3

�

=
s (s +1)(s +2)

6
=

s
∑

k=1

k
∑

i=1

i =
s−1
∑

j=0

j+1
∑

i=1

i .

We now prove Equation (2.3.4). Let D =ψ−1
s (V (Ks ))be the subscheme of X s =Blts−1

· · ·Blt1
Bl0A2,

where the points ti are as in Proposition 2.3.7, defined as the scheme-theoretic preimage of

V (Ks )⊂A2 via the iterated blowup mapψs : X s →A2. Then, Proposition 2.3.7 allows us to iden-

tify theA2-schemes X s and BlKs
A2 and, as a consequence, to compute the Behrend number

of the ideal Ks as

νC[x ,y ]/Ks
=
∑

C⊂D

multC D ,

where the sum ranges over all irreducible components C of D . Notice that, if ϵ : BlKs
A2→A2

denotes the blowup morphism then, under the canonical isomorphism X s
∼= BlKs

A2, the

exceptional locus Exc(ϵ) corresponds to Dred.

Recall that Dred is a chain of smooth rational projective curves C1, . . . , Cs , where C1 corre-

sponds to the blowup of the origin of A2 under the isomorphism of Proposition 2.3.7 and

Ci ∩C j =

(

one point if |i − j |= 1

; if |i − j |> 1.

We thus have to compute the sum
s
∑

i=1

multCi
D .

Recall (see Section 1.1) also that X s is covered by s +1 charts isomorphic to A2 defined by

Uk = SpecC[x y −k+1, x−1 y k ], 1≤ k ≤ s

Us+1 = SpecC[x y −s , y ].

1Such number is known as the s -th tetrahedral number.
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If ak , bk are the toric coordinates on Uk for k = 1, . . . , s +1, the mapψs is

ψs

�

�

Uk
(ak , bk ) = (a

k
k b k−1

k , ak bk ), 1≤ k ≤ s

ψs

�

�

Us+1
(as+1, bs+1) = (as+1b s

s+1, bs+1).

Therefore, the ideal sheafψ−1
s (Ks ) · OX s

⊂OX s
is given, locally on each chart, by

ψs

�

�

−1

Uk
(Ks )C[ak , bk ] = (a

k
k b k−1

k , ak bk )(a
k
k b k−1

k , a 2
k b 2

k ) · · · (a
k
k b k−1

k , a k
k b k

k ) · · · (a
k
k b k−1

k , a s
k b s

k )

= (ak bk ·a 2
k b 2

k · · ·a
k−1
k b k−1

k ·a k
k b k−1

k · · ·a k
k b k−1

k ) for k ≤ s

ψs

�

�

−1

Us+1
(Ks )C[as+1, bs+1] = (as+1b s

s+1, bs+1)(as+1b s
s+1, b 2

s+1) · · · (as+1b s
s+1, b s

s+1)

= (bs+1b 2
s+1 · · ·b

s
s+1).

We can read from the above formulas the contribution ai j of the curvilinear ideal (x ) +mi

to the multiplicity of the component C j of the exceptional divisor of ϵ. This information is

encoded in the matrix

A = (ai , j )i , j∈{1,...,s } =

















1 1 · · · 1 1

1 2 · · · 2 2
...

...
...

...
...

1 2 · · · s −1 s −1

1 2 · · · s −1 s

















.

For instance, the last column is given by the vector of the exponents of bs+1 in the last displayed

equation. Notice that, ai j =min{i , j }.
The Behrend number of Ks is

νC[x ,y ]/Ks
=

∑

i , j∈{1,...,s }
ai j .

In order to complete the proof we observe that

A =

















1 1 · · · 1 1

1 1 · · · 1 1
...

...
...

...
...

1 1 · · · 1 1

1 1 · · · 1 1

















+

















0 0 · · · 0 0

0 1 · · · 1 1
...

...
...

...
...

0 1 · · · 1 1

0 1 · · · 1 1

















+ · · ·+

















0 0 · · · 0 0

0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 1 1

0 0 · · · 1 1

















+

















0 0 · · · 0 0

0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0

0 0 · · · 0 1

















.

Hence, we have

νC[x ,y ]/Ks
=

s
∑

k=1

k 2 =
s (s +1)(2s +1)

6
,

which completes the proof.

Comparing Behrend functions, we obtain the following easy corollary.

Corollary 2.3.12. A complete tower of height at least 2 is not a curvilinear ideal, i.e. it has

embedding dimension 2.
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Following the prescriptions in Remark 2.3.9, with similar techniques, one can prove the

following generalisation of Theorem 2.3.11.

Theorem 2.3.13. Let 1≤ i1 < · · ·< is be a strictly increasing sequence of positive integers and let

K =
∏

1≤k≤s (x + f (y ))+mik be a tower of height is . Then there are identities

ℓC[x ,y ]/K =
s
∑

k=1

k
∑

j=1

i j ,

νC[x ,y ]/K = ℓC[x ,y ]/K +
s−1
∑

j=1

i j (s − j ).

We have thus computed the length and the Behrend number of an arbitrary tower, and the

latter happens to be greater than the former.

2.3.4 Products of towers, Dynkin diagrams and Behrend functions

Definition 2.3.14. Let X be a smooth quasiprojective surface and let C1, . . . , Cs ⊂ X be s distinct

rational smooth projective curves with the property that Ci ∩C j is either empty or a singleton

for i ≠ j . We will call Dynkin diagram of the set of curves {Ci | i = 1, . . . , s } a diagram made of:

(i) s circles that we will call nodes, each labeled by one of the curves, and decorated with

its self-intersection,

(ii) for any i ̸= j such that Ci ∩C j ̸= ;, a segment called edge joining the nodes labeled by Ci

and C j .

Example 2.3.15. Let K =
∏

1≤i≤s Ii be a complete tower. Then, as explained in Corollary 2.3.8

the variety X =BlK A2 can be obtained after a sequence of blowups each with centre a reduced

point and hence, X is smooth. Moreover, the exceptional locus Exc(ϵ) of the blowup map

ϵ : X →A2

consists of a chain of rational smooth projective curves D = {C1, . . . , Cs }. In particular, they

satisfy the same property as the curves in Definition 2.3.14.

Notice that, for all j = 1, . . . , s the ideal sheaf ϵ−1(I j ) · OX ⊂OX defines a Cartier divisor. As a

consequence, we can associate, to each ideal I j one of the curves Ci . We say that the curve Ci

corresponds to the ideal I j if the canonical morphism

ϕ : X →BlI j
A2

contracts all the curves Ck ⊂ X for k ̸= i (see Example 2.3.10). Notice that this association

is well defined. Indeed, BlI j
A2 is normal by Lemma 2.3.6 and hence ϕ has connected fibres

by Theorem 0.9.2. As a consequence, only one of the curves Ci can map bijectively onto the

irreducible rational curve Exc(BlI j
A2).

· · ·
I1

−2

I2

−2

Is−1

−2

Is

−1

Figure 2.3. The Dynkin diagram of the tower K , with each node labeled by an ideal.
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Sometimes, in the literature (see e.g. [8]), the underlying unlabeled diagram is called

bamboo.

Lemma 2.3.16. Let us consider the product two complete monomial towers of height h, of the

form

Ih =

�

h
∏

k=1

(x ) +mk

�

·

�

h
∏

k=1

(y ) +mk

�

.

Then, the numbers {ℓC[x ,y ]/Ih
| h ≥ 1} satisfy the recursive relation

ℓC[x ,y ]/Ih
= ℓC[x ,y ]/Ih−1

+h 2+3h −1.

Equivalently, we have

ℓC[x ,y ]/Ih
=

h (h +1)(h +2)
3

+h 2,

which in turn equals 2 · ℓ+h 2, where ℓ is the colength of the tower
∏h

k=1(x ) +m
k .

Proof. The equivalence between the two formulas is straightforward to check and we will omit

it. We now prove the former.

For each h ≥ 1, we have

Ih =m2(x , y 2)(x 2, y ) · · · (x , y h )(x h , y )

= (x 2, x y , y 2)(x 3, x y , y 3) · · · (x h+1, x y , y h+1).

Then Ih , a product of h monomial ideals, can be generated by 2h +1 monomials, namely we

have

(2.3.5) Ih =
�

x h−i y h+(i+1
2 ), x h+(i+1

2 )y h−i
�

� 0≤ i ≤ h
�

.

A few examples are given in Figure 2.4. The integers

(2.3.6) ah = h +

�

h +1

2

�

, h ≥ 1,

represent the maximal power of x (equivalently, of y ) appearing among the 2h +1 generators

of Ih . The colength of Ih is computed, thanks to Equation (2.3.5), in a recursive way from the

base case ℓC[x ,y ]/I1
= 3. We obtain

ℓC[x ,y ]/Ih
= ℓC[x ,y ]/Ih−1

+2ah −1= ℓC[x ,y ]/Ih−1
+h 2+3h −1.

as required.

The induction described in the proof works as depicted in Figure 2.4 below.

Figure 2.4. The ideals Ih for h = 1, 2, 3. The lengths are 3, 12, 29, and the heights of the respective

Ferrers diagrams are a1 = 2, a2 = 5, a3 = 9.
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Theorem 2.3.17. The following properties hold for complete towers.

1. Let Kx and K y be two complete towers, of heights hx and hy respectively, of the form

Kx =
hx
∏

k=1

(x + g x (y ))+m
k , K y =

hy
∏

k=1

(y + g y (x ))+m
k ,

for some g x ∈C[y ] and g y ∈C[x ] such that

[(x + g x ) +m
2] ̸= [(y + g y ) +m

2] ∈P(m/m2).

Then

ℓC[x ,y ]/Kx ·K y
= ℓC[x ,y ]/Kx

+ ℓC[x ,y ]/K y
+hx hy(2.3.7)

νC[x ,y ]/Kx ·K y
= νC[x ,y ]/Kx

+νC[x ,y ]/K y
+2hx hy −hx −hy .(2.3.8)

2. Let K1 and K2 be two complete towers, of height respectively h1 and h2, of the form

K1 =
h1
∏

k=1

(x + g1(y ))+m
k , K2 =

h2
∏

k=1

(x + g2(y ))+m
k .

for some g1 ̸= g2 ∈C[y ] of respective degrees

deg(g1)< h1 and deg(g2)< h2.

Let d = o (g1− g2) be the order of g1− g2 ∈C[y ]. Then

(2.3.9) νC[x ,y ]/K1·K2
= νC[x ,y ]/K1

+νC[x ,y ]/K2
+2h1h2−d (h1+h2).

Proof. First of all, an easy computation shows that, since [(x + g x )+m2] ̸= [(y + g y )+m2] are

different points inP(m/m2), one also has [(x−g x )+m2] ̸= [(y −g y )+m2] ∈P(m/m2). In particular,

the Jacobian of the map

A2 A2

(x , y ) (x − g x (y ), y − g y (x ))

← →
ψ

←[ →

has maximal rank at the origin 0 ∈ A2, i.e. it is a biholomorphism near the origin. Such

observation ensures that, in order to prove (1), it is enough to prove the statement for g x =
g y = 0. Therefore, we have reduced to the case

Kx =
hx
∏

k=1

(x ) +mk =
hx
∏

k=1

(x , y k )

K y =
hy
∏

k=1

(y ) +mk =
hy
∏

k=1

(x k , y ).
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The statement about the length is already proved in the case hx = hy (Lemma 2.3.16). We

prove the general case via an inductive argument. Let us assume, without loss of generality,

that e = hx −hy > 0. We argue by induction on e . We set h = hy and we denote by K (t )• , for

t ∈N, the tower

K (t )• =
t
∏

k=1

(•) +mk ,

for • ∈ {x , y }.

Step 1. Assume e = 1 (so that hx = h+1). To prove Equation (2.3.7) in this case, it is enough

to observe that the Ferrers diagram of the ideal

K (h+1)
x ·K (h )y = (x , y h+1) ·K (h )x ·K (h )y = (x ) ·K (h )x ·K (h )y + (y ah+h+1).

is obtained from the Ferrers diagram of K (h )x ·K (h )y by shifting it to the right by one position

and adding a column of height ah +h +1 to the left, where ah is defined as in Equation (2.3.6).

Thus the colength of K (hx )
x ·K (hy )

y ⊂C[x , y ] is

ℓC[x ,y ]/K (h+1)
x ·K (h )y

= ℓC[x ,y ]/K (h )x ·K
(h )
y
+ah +h +1

= h 2+2 ·
�

h +2

3

�

+

�

h +1

2

�

+2h +1,

where we have exploited Lemma 2.3.16 in the last equality. It is straightforward to check that

this number agrees with

�

h +3

3

�

+

�

h +2

3

�

+ (h +1)h = ℓC[x ,y ]/K (hx )
x
+ ℓ
C[x ,y ]/K

(hy )
y
+hx hy .

So the base of the induction is proved.

Step 2. Now we assume Equation (2.3.7) up to e and we prove the formula for e +1 (so now

h = hy and hx = h + e +1). The ideal we have to compute the length of is

Ih ,e+1 = K (h+e+1)
x ·K (h )y =

�

x , y h+1
� �

x , y h+2
�

· · ·
�

x , y h+e
� �

x , y h+e+1
�

·K (h )x ·K (h )y .

By direct calculation, or by an application of Equation (2.3.1) taken with s = e and ik = h +k ,

one finds that, for every e > 0, there is an identity

�

x , y h+1
� �

x , y h+2
�

· · ·
�

x , y h+e
�

=
�

x i y (e−i )h+(e+1−i
2 )

�

� 0≤ i ≤ e
�

.

We know, by the inductive hypothesis, that

ℓC[x ,y ]/Ih ,e
= ℓC[x ,y ]/K (h+e )

x
+ ℓC[x ,y ]/K (h )y

+ (h + e )h

=

�

h + e +2

3

�

+

�

h +2

3

�

+ (h + e )h .

As in Step 1, the Ferrers diagram of the ideal

Ih ,e+1 =
�

x , y h+e+1
�

· Ih ,e = (x ) · Ih ,e +
�

y h+e+1
�
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is obtained from the Ferrers diagram of Ih ,e by shifting it to the right by one position, and

adding a column of height

�

e +1

2

�

+ e h +

�

h +1

2

�

+h + (h + e +1)

to the left. The number
�e+1

2

�

+ e h +
�h+1

2

�

+h is the height of the Ferrers diagram of Ih ,e . We

obtain

ℓC[x ,y ]/Ih ,e+1
= ℓC[x ,y ]/Ih ,e

+

�

e +1

2

�

+ e h +

�

h +1

2

�

+h + (h + e +1).

It is now straightforward to check that this number agrees with

�

h + e +3

3

�

+

�

h +2

3

�

+ (h + e +1)h = ℓC[x ,y ]/K (h+e+1)
x

+ ℓC[x ,y ]/K (h )y
+ (h + e +1)h

= ℓC[x ,y ]/K (hx )
x
+ ℓ
C[x ,y ]/K

(hy )
y
+hx ·hy .

So we have proved Equation (2.3.7).

We now move to proving Equation (2.3.8). This equation is implied by the more general

Equation (2.3.9), whose proof is essentially equivalent to that of Equation (2.3.8). Therefore

we will give full details on the former and precise indications on how to prove the latter.

We shall use the shorthand notation I = Kx ·K y . Lemma 0.2.1 implies, together with the

usual toric construction, that there is a canonical isomorphism of A2-schemes ϕ : Y →BlI A2

where Y is the toric variety with the following fan

Σ=

e1+hy e2

...
e1+2e2

2e1+ e2e1+ e2 hx e1+ e2

· · ·
e2

e1

and the structure of A2-scheme of Y is induced by the identity map of the standard lattice

Z2 ⊂R2.

Now, as in the proof of Theorem 2.3.11, we can create a table encoding the contribution of

each ideal Ix ,i = (x )+mi and Iy , j = (y )+m j , for i = 1, . . . , hx and j = 1, . . . , hy , to the multiplicity

of each irreducible component of the exceptional divisor of the blowup BlI A2. Such table has

the following form.
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Iy ,hy

Iy ,hy−1

...

Iy ,2

Iy ,1 =m

Ix ,hx

Ix ,hx−1

...

Ix ,2

Ix ,1 =m 1 1 · · · 1 1 1 · · · 1 1

1 1 · · · 1 1 2 · · · 2 2

...
...

...
...

...
...

...
...

...

1 1 · · · 1 1 2 · · · hx −1 hx −1

1 1 · · · 1 1 2 · · · hx −1 hx

1 1 · · · 1 1 1 · · · 1 1

11· · · 112 · · ·22

...
...

...
...

...
...

...
...

...

11· · · 112 · · ·hy −1hy −1

11· · · 112 · · ·hy −1hy

· · ·· · ·
m

−3

Ix ,2

−2

Ix ,hx−1

−2

Ix ,hx

−1

Iy ,2

−2

Iy ,hy −1

−2

Iy ,hy

−1

Now, the Behrend number is the sum of all entries of the above table and, the equality

νC[x ,y ]/I = νC[x ,y ]/(Kx ·K y
= νC[x ,y ]/Kx

+νC[x ,y ]/K y
+2hx hy −hx −hy

is obtained similarly as in the proof of Theorem 2.3.11. Finally, (1) is proved.

In order to prove (2), we reduce to the simpler case g = g1 =−g2 by applying the biholo-

morphism

A2 A2

(x , y )
�

x − g1(y )+g2(y )
2 , y

�

.

← →∼

←[ →

In particular, in this case, we have d = o (g ) = o (g1) = o (g2). Consider the ideals

Ii = (x ) +m
i for i = 1, . . . , d −1,

J j =

�

x −
j
�

� j
�

�

g (y )

�

+m| j |+d for −h1+d ≤ j ≤ h2−d and j ̸= 0,

J0 = (x ) +m
d .

Then, we can write the ideal K = K1 ·K2 as K = I · J , where

I =

�

d−1
∏

i=1

Ii

�2

, J =

 

h2−d
∏

j=0

J j

!

·

 

h1−d
∏

j=0

J− j

!

.

Let ϵI : BI =BlI A2→A2 be the blowup map. Then,

BlK A2 =BlI J A2 ∼=Blϵ−1
I (J )·OBI

BI
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where the isomorphism is over A2. Notice that BI is a toric variety. A direct computation in

toric geometry shows that:

ϵ−1
I (J ) · OBI

= eI · fK1 · fK2

where eI defines a Cartier divisor, while fK1 and fK2 are ideal sheaves of two 0-dimensional

schemes with the same support {p} ⊂ BI with the property that p is a toric point. Consider a

toric chart U ⊂ BI such that U ∼=A2 and p ∈U is the origin. If a , b are toric coordinates on U ,

the two C[a , b ]-modules fKi (U ), for i = 1, 2 are complete towers of the form

eK1 =
h1−d+1
∏

j=1

�

a + eg (b )
�

+m j
p , eK2 =

h2−d+1
∏

j=1

�

a − eg (b )
�

+m j
p ,

where o (eg ) = 1 and mp = (a , b ) is the ideal of the origin of U . Now, the property o (eg ) = 1

implies that there is a biholomorphism around p which transforms the towers eK1 and eK2 in the

monomial towers Kx and K y in the first part of the statement. As a consequence, the Dynkin

diagram of BlK A2 is the following.

· · ·

· · ·

· · ·

I1

−2

I2

−2

Id−1

−2

J0

−3

J−1

−2

J−2

−2

Jd−h1+1

−2

J−h1+d

−1

J1

−2

J2

−2

Jh2−d−1

−2

Jh2−d

−1

At this point, finding the Behrend number is a simple calculation analogous to those made in

the proof of (1) and we leave it to the reader.

Remark 2.3.18. Similarly as we have done in Remark 2.3.9, the above proposition can be easily

generalised to non-complete towers. For example, in the easiest case when

Kx =
sx
∏

k=1

(x ) +mik , K y =
sy
∏

k=1

(y ) +m jk ,

for 1≤ i1 < · · ·< isx
and 1≤ j1 < · · ·< jsy

, are two monomial non-complete towers. Then, a fan

Σ in R2 of the toric variety X =BlKx K y
A2 is the following.

Σ=

e1+ jsy
e2

...
e1+ j1e2

i1e1+ e2 isx
e1+ e2

· · ·
e2

e1
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Moreover, the Behrend number νC[x ,y ]/Kx ·K y
can be computed similarly as described in Re-

mark 2.3.9.

Notice that, if the ray ρ = e1+ e2 belongs to the fan Σ then, X has only singularity of type

An . While, if ρ = e1 + e2 /∈ Σ then, X has an isolated singularity of different kind associated

to the cone < e1+ j1e2, i1e1+ e2 >. In particular, such singularity is never Gorenstein (see [13,

Prop. 10.1.6.]), while the An singularities are always Gorenstein.

2.3.5 Behrend function and Hilbert–Samuel strata

We know by work of Briançon [8]and Iarrobino [36], that the punctual Hilbert scheme Hilbn (A2)0 ⊂
Hilbn (A2), parametrising subschemes entirely supported at the origin, contains the locus of

the curvilinear schemesCn as a Zariski open (and hence dense) subset. Moreover, the comple-

ment Hilbn (A2)0 \Cn can be stratified according to the Hilbert–Samuel function, also called

the type, of fat points (see [36] for a definition). Let us consider the set-theoretic map

βn : Hilbn (A2)0→Z, [I ] 7→ νC[x ,y ]/I .

We know by Example 2.2.5 this function is constantly equal to n onCn ⊂Hilbn (A2)0. Continuity

of βn is of course out of question. In fact, the following example shows that βn is in general

not even constant on the Hilbert–Samuel strata.

Example 2.3.19. Consider the two ideals

I = (x y , x 3− y 3), J = (x y , x 4, y 3).

Then, length(C[x , y ]/I ) = 6= length(C[x , y ]/J ), and since I is a complete intersection we have

also

νC[x ,y ]/I = 6

by Example 2.2.4. However, this is not the case for the Behrend number of the ideal J . Indeed,

J = (x , y 2) · (x 3, y ) is a product of curvilinear ideals and hence, in particular, a product of two

towers. In order to compute the Behrend number of the ideal J we can proceed as suggested in

Remark 2.3.18. Alternatively, we will show in the next section (see Section 2.4.2) an algorithm

to compute the Behrend number of such kind of ideals. By applying it, one finds

νC[x ,y ]/J = 7> 6.

Finally, we observe that they have the same type

T (I ) = T (J ) = (1, 2, 2, 1, 0, 0, 0),

and hence, they belong to the same Hilbert–Samuel stratum of Hilb6(A2)0.
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2.4 An algorithm for the Behrend number of a product of towers

In the previous section we computed the Behrend number of an arbitrary tower K ⊂C[x , y ] and

of the product of two towers. In this section we explain an algorithmic procedure to perform

the calculation for an arbitrary (finite) product of towers. This produces a huge number of

examples of Behrend numbers of non-monomial schemes, analogously to Theorem 2.3.17 (2).

2.4.1 Products of towers: the complete case

We already observed (cf. Example 2.3.15) that the nodes of the Dynkin diagram attached to

the blowup BlK A2 along a complete tower K ⊂ C[x , y ] can be labeled by ideals (see also

Figure 2.3). In this section we shall construct more general Dynkin diagrams, each associated

with a product of towers; in this subsection we focus on the complete case. In this context, all

the Dynkin diagrams under consideration will have a node cm associated to the maximal ideal

m= (x , y )⊂C[x , y ], and all the other nodes will be connected to cm by a sequence of edges. In

this section we will use the following terminology: we will say that cm has level 1, while the

level of each other node c is defined as

level(c ) = 1+
�

�number of edges separating c from cm
�

�.

For example, one can show that, if I is the ideal

(2.4.1) I =m · ((x ) +m2) · ((y ) +m2) · ((x + y ) +m2) · ((x + y ) +m3),

then, the blowup BlI A2 is smooth and the Dynkin diagram of Exc(BlI A2) is as in Figure 2.5.

m−4

(x ) +m2

−1
(y ) +m2

−1

(x + y ) +m3

−1

(x + y ) +m2 −2

LEVEL 1

LEVEL 2

LEVEL 3

Figure 2.5. The Dynkin diagram of the ideal (2.4.1).

Note that, by construction of the Dynkin diagram associated to the exceptional locus of

the blowup with centre the product of complete towers, a necessary condition for two nodes

to be connected by an edge is that their levels differ by one unit. We will say that a node c1 is a

descendant of another node c2 (or that c2 is an ancestor of c1) if c1 and c2 are connected by a

sequence of edges and the level of c1 is greater than the level of c2.

Here is the general setup. Consider a set of complete towers

T = {K1, . . . , Kt }



CHAPTER 2. ON THE BEHREND FUNCTION AND THE BLOWUP OF SOME FAT POINTS102

of the form

Ki =
si
∏

k=1

( fi ) +m
k ,

for i = 1, . . . , t , and consider also their product

T =
t
∏

i=1

Ki .

Then, the blowup BlT A2 is smooth and there is an algorithm to construct the Dynkin diagram

of the exceptional locus of the map

ϵ : BlT A2→A2.

Moreover, we will show how to compute, starting from such diagram, the Behrend number of

the fat point C[x , y ]/T . We briefly describe the algorithm.

Let h ≥ 1 be the maximum of the heights of the towers in T , i.e.

h =max{ si | i = 1, . . . , t } .

Consider the h equivalence relations on T defined, for r = 1, . . . , h , by

Ki ∼r K j ⇔

(

1≤ r ≤min{si , s j }, fi ≡ f j mod mr , or

r >max{si , s j },

and call classes in excess the classes of the form [Ki ]∼r for r > si . In particular, there is at most

one class in excess for any r = 1, . . . , h .

We are now ready to construct the underlying graph of the Dynkin diagram for Exc(BlT A2).
We put one node at the first level, namely the node cm corresponding to the unique class in

T /∼1, and, at the i -th level, we put a node for each element in T /∼i excluding the possible

class in excess. Finally, we add an edge joining the node associated to some class [K ]∼r to the

node associated to some class [K ′]∼r ′ if and only if

�

�r − r ′
�

�= 1 and [K ]∼r ∩ [K ′]∼r ′ ̸= ;.

The self-intersection at each node of level strictly greater then one is given by

−
�

�{edges issuing from the node}
�

�

while, the node cm is labeled by the self intersection

−
�

�{edges issuing from cm}
�

�−1.

This allows to compute the multiplicities of the irreducible components of the exceptional

divisor of BlT A2. We now briefly explain how to compute Behrend numbers.

Let I be an ideal appearing as a factor of some tower in T , an let cI be the node of the

Dynkin diagram associated to I (see Example 2.3.15). Let also c be any node in the Dynkin

diagram and let Dc be the corresponding irreducible component of Exc(BlT A2). Then, the
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contribution of the ideal I to the multiplicity of the exceptional divisor along the component

Dc is given by














level of cI if c = cI or if c is a descendant of cI ,

level of c if c is an ancestor of cI ,

1 otherwise.

Now, summing up all these contributions over all pairs (I , c ), one obtains the Behrend number

of C[x , y ]/T .

2.4.2 Products of towers: the non-complete case

Once more, the complete case helps us in understanding the non-complete case.

Let

T = {K1, . . . , Kt }

be a set of towers of the form

Ki =
si
∏

k=1

( fi ) +m
ik ,

for i = 1, . . . , t , and 1≤ i1 < · · ·< isi
, and let

T =
t
∏

i=1

Ki

be their product. Consider also the set of complete towers

eT =
�

eK1, . . . , eKt

	

defined by

eKi =
isi
∏

k=1

( fi ) +m
k ,

for i = 1, . . . , t , and let us set

eT =
t
∏

i=1

eKi .

Let us also call ϵ : B =BlT A2→A2 and eϵ : eB =Bl
eT A2→A2 the blowup maps. Then, eϵ−1(T ) · O

eB

defines a Cartier divisor. Hence, there is a canonical A2-morphism ϕ : eB → B . Let

Exc( eB ) = eC1 ∪ · · · ∪ eCα ⊂ eB , Exc(B ) =C1 ∪ · · · ∪Cβ ⊂ B

be the decompositions of Exc( eB ) and Exc(B ) into irreducible components. Clearly, we have

α ≥ β . Then, as per Theorem 0.9.2, the morphism ϕ must contract some of the curves in

Exc( eB ) and it is an isomorphism when restricted to the complement of the contracted curves.

In particular, up to reordering the components of Exc( eB ), the map

ϕ
�

�

eB∖( eCβ+1∪ eCβ+2∪···∪ eCα)
: eB ∖ ( eCβ+1 ∪ eCβ+2 ∪ · · · ∪ eCα)→ B ∖ϕ( eCβ+1 ∪ eCβ+2 ∪ · · · ∪ eCα)

is an isomorphism which restricts, for j = 1, . . . ,β , to an isomorphism

eC j ∖ ( eCβ+1 ∪ eCβ+2 ∪ · · · ∪ eCα)→C j ∖ϕ( eCβ+1 ∪ eCβ+2 ∪ · · · ∪ eCα).
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Therefore, for j = 1, . . . ,β , the multiplicity of the exceptional divisor ETA2 = V (ϵ−1(T ) · OB )
along C j equals the multiplicity of the Cartier divisor defined by eϵ−1(T ) · O

eB along eC j .

This observation allows one to compute the Behrend number of any (finite) product of

towers.

2.4.3 Examples

In general, one does not need to pass trough the blowup of a complete tower to compute the

Behrend number of some tower K . The convenience in introducing the complete towers even

in the non-complete case is in the computations. The following example should explain the

situation.

Example 2.4.1. Consider the ideal I = (x , y 2) ⊂C[x , y ] and the blowup ϵ : BI = BlI A2→A2.

Then, BI is described in Proposition 2.3.3 and it is a toric surface covered by two charts: the

first, U1, is isomorphic to the affine quadric cone, whereas the second, U2, is smooth and

isomorphic toA2. In particular, U1 is the affine toric variety described by the cone generated

by the rays of primitive vectors ρ1 = e2,ρ2 = 2e1+ e2 and, by standard toric geometry (see [13,

§ 3.1]), we have an isomorphism of A2-schemes

U1
∼= SpecC[x , x−1 y 2, y ].

If we introduce the variables a = x , b = x−1 y 2, c = y , then the restriction to U1 of the blowup

map is associated to the C-algebra homomorphism

C[x , y ] S =C[a , b , c ]/(a b − c 2)

x a

y c .

←→

←[ →

←[ →

Computing ϵ−1(I ) · OU1
, one finds

ϵ−1(I ) · OU1
= (a , c 2) = (a , a b ) = (a )⊂ S ,

so that one would be tempted to conclude that νC[x ,y ]/I = 1. This is, in fact, incorrect, be-

cause, in the local ring OU1,Exc(ϵ)
∼= S(a ,c ) the function b is invertible and we have νC[x ,y ]/I =

ordExc(ϵ)(a ) = ordExc(ϵ)(c 2b−1) = ordExc (ϵ)(c 2) = 2 ·ordExc(ϵ)(c ) = 2.

This complication never occurs in the case of smooth surfaces.

Even though the procedure described in Section 2.4.2 above is quite straightforward, one

may need to use a computer to actually compute the Behrend number of an arbitrary (finite)

product of towers. Computing the length of a product of towers, on the other hand, can often

be quite complicated. Below we show an example that can be computed by hand.

Example 2.4.2. Let K =
∏

1≤k≤s (x ) +m
ik =

∏

1≤k≤s (x , y ik ) be a monomial tower with 1< i1 <

· · ·< is , and set J = K ·mn for some integer n > 0. Then, the following formula holds

J = (x , y )n+s ∩

 

x s , x s−i y
n+

i
∑

k=1
ik

�

�

�

�

�

i = 1, . . . , s

!

.
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As the ideal has now taken on a more pleasant form, the following formulas can easily be

obtained:

ℓC[x ,y ]/J = ℓC[x ,y ]/K +
n (n +1) +2n s

2
,

νC[x ,y ]/J = νC[x ,y ]/K + s n +n + s .
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2.5 The general normal case

In this section, we will completely solve the problem of computing the Behrend number

νC[x ,y ]/I for a normal monomial ideal I ⊂ C[x , y ]. Moreover, in Theorem 2.6.4 we will give

a toric description of the blowup BlI A2 and we will prove a factorisation theorem (Corol-

lary 2.6.11) that allows one to write the ideal I uniquely as a product of powers of much easier

ideals, namely the normalisations of the monomial complete intersection ideals (x h , y k ).

2.5.1 The key example

Consider the ideals

(2.5.1) I = x 2+m3 = (x 2, x y 2, y 3), J =m · ((x ) +m2) · I .

In particular ℓC[x ,y ]/I = 5 and ℓC[x ,y ]/J = 14.

We want to perform, for the ideals I and J , the same analysis that we did for the ideals in

the previous sections. We have (for instance via Proposition 0.2.2)

X I =BlI A2 =







((x , y ), [w0 : w1 : w2]) ∈A2×P2

�

�

�

�

�

�

�

x w1 = y w2

y 2w0 = x w2

y w0w1 =w 2
2







and the exceptional locus is

DI = Exc(X I ) =
�

((x , y ), [w0 : w1 : w2]) ∈ X I

�

� x = y =w2 = 0
	∼=P1.

In order to study the variety X I we cover it with the three affine charts

X I ,i = X I ∩ (A2×{wi ̸= 0}), i = 0, 1, 2.

We will also denote by DI ,i , for i = 0, 1, the chart on DI given by DI ,i =DI ∩X I ,i .

Now, X I ,2 is smooth, while X I ,0 and X I ,1 have each an isolated singular point pi ∈DI ,i for

i = 0, 1. The singular charts have the form

X I ,0
∼=A2/G0, X I ,1

∼=A2/G1,

where, given a primitive third root of unity ξ3 ∈C×, the groups G0,G1 are

G0 =

®�

ξ3 0

0 ξ3

�¸

⊂GL(2,C), G1 =

®�

−1 0

0 −1

�¸

⊂ SL(2,C).

As a consequence, the surface X I is normal. This is a general fact about quotient surface

singularities and it can also be deduced from Proposition 0.10.2.

Let ϵI : X I →A2 be the blowup map and let

ϕ : eX I → X I

be the minimal resolution of X I , i.e. eX I is a smooth surface and ϕ is a projective birational

morphism which does not contract any rational (−1)-curve. It is well known that the variety eX I
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is obtained by blowing up the singular points p0 and p1. Let us also denote by eDI ⊂ Exc(ϵI ◦ϕ)⊂
eX I the strict transform of DI , i.e. the Zariski closure ofϕ−1(DI ∖{p0, p1}). Given the description

of the singularities, we have that Exc(ϕ) is a disjoint union of two smooth projective rational

curves L0, L1, corresponding respectively to p0 and p1, each of which intersects the line eDI at a

point. Furthermore, the self-intersections of L0 and L1 are respectively

L 2
0 =−3, L 2

1 =−2.

Notice that the map ϵI ◦ϕ is a projective birational morphism of smooth surfaces and hence,

by classical theory of surfaces (see [3, Ch. III]), it follows that eX I contains a smooth rational

projective (−1)-curve, and the only possible such curve is eDI . The Dynkin diagram attached to

{ eDI , L0, L1 } is depicted in Figure 2.6.

L0

−3

eDI

−1

L1

−2

Figure 2.6. The Dynkin diagram attached to { eDI , L0, L1 }.

We claim that there is a canonical isomorphism ofA2-schemes between X J =BlJ A2 and eX I ,

where J is as in (2.5.1). Thanks to Lemma 0.2.1, we know that there is a canonical morphism

of A2-schemes

ψ: X J → X I .

This follows from the existence of the isomorphism of A2-schemes

X J Blϵ−1(I )·OB
B←→∼

where ϵ : B → A2 is the blowup with centre the ideal m · (x , y 2), together with the universal

property of blowups. In fact, we observe that there are canonical isomorphisms ofA2-schemes

Z

eX I X J

←→eϑ

←

→
ϑJ

where Z is the result of an iterated blowup, namely

Z B A2←→
µ ←→ϵ

whereµ is the blowup of B with centre the intersection point of the two irreducible components

of Exc(ϵ).
In order to construct the isomorphisms eϑ and ϑJ , we start by noticing that the surface Z

just described is the toric variety associated to the fan Σ in R2 shown below.

e1

e2 e1 + e2

3e1 +2e2

2e1 + e2
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Now, the same computations as those we did in the previous section show that (ϵ ◦µ)−1(I ) · OZ

and (ϵ◦µ)−1(J )·OZ define Cartier divisors on Z and, as a consequence, there exist canonicalA2-

morphisms ϑI : Z → X I and ϑJ : Z → X J . Moreover, ϑI does not contract any (−1)-curve and,

as a consequence, it lifts to an isomorphism eϑ : Z → eX I because of the universal property of the

minimal resolution (see [3, Thm. (6.2)]). The map ϑJ is an isomorphism because ϵ−1(I ) · OB is

the product of a principal (Cartier) ideal sheaf times the ideal sheaf of the reduced intersection

point of the two irreducible components of Exc(ϵ).
As a consequence, X J and eX I are canonically isomorphic and, if we label their Dynkin

diagram (see Figure 2.6) as explained in Example 2.3.15, then we obtain the following diagram.

m

−3

I

−1

(x ) +m2

−2

Notice that, the Dynkin diagram above is different from those we encountered in Theo-

rem 2.3.17 or appearing in Section 2.4.

Now we move to the computation of the Behrend numbersνC[x ,y ]/I andνC[x ,y ]/J exploiting

the canonical isomorphisms of A2-schemes just described. The computation of νC[x ,y ]/J is

achieved, just as in the proof of Theorem 2.3.11, via toric geometry, yielding the answer

νC[x ,y ]/J = 21.

In order to compute νC[x ,y ]/I , we start by noticing that the morphism ϕ ◦ eϑ : Z → X I contracts

two disjoint smooth rational projective curves over two distinct points of X I and it is an

isomorphism outside such curves. Therefore, if C ⊂ Z is the curve that dominates Exc(X I ),
then ϕ ◦ eϑ|C is a birational morphism and we have

νC[x ,y ]/I =multC (V ((ϵ ◦µ)−1(I ) · OZ )).

Again, toric geometry applied as in the proof of Theorem 2.3.11 gives the answer, namely

νC[x ,y ]/I = 6.

In Theorem 2.6.5, we shall describe a general procedure which, in particular, allows one to

compute the number νC[x ,y ]/I .

2.5.2 Behrend number and factorisations of normal ideals

Notation 2.6. Set Ih ,k = (x h , y k )⊂C[x , y ]. Then we let nh ,k = I h ,k be the normalisation of Ih ,k ,

defined as in Proposition 0.10.2.

Example 2.6.1. For istance, nh ,h =mh for all h ≥ 0. One also has n2,3 = (x 2, x y 2, y 3).

Lemma 2.6.2. For any δ≥ 0 and h , k > 0, there is an identity of ideals

nδh ,k = nδh ,δk ⊂C[x , y ].
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Proof. This is trivial for δ= 0, 1, and it follows, for higher δ, combining Proposition 0.10.2 with

the general formula

ConvQ(δv1, . . . ,δvs ) =ConvQ

�

s
∑

i=1
ni vi

�

�

�

�

s
∑

i=1
ni =δ, ni ≥ 0

�

⊂V

for any choice of vectors v1, . . . , vs ∈V in someQ-vector space V .

Lemma 2.6.3. Let X be the toric surface with fan Σ in R2 generated by the primitive vectors

ρ0 = e1, ρ1 =βe1+αe2, ρ2 = e2.

Then X and Blnα,β
A2 are canonically isomorphic as A2-schemes.

Proof. The variety X is, by construction covered by two chartsU1 andU2 respectively associated

to the conesσ1 = 〈ρ0,ρ1〉 andσ2 = 〈ρ1,ρ2〉. In particular, by standard toric geometry (see [13,

§ 3.1]), there exist two integers s1, s2 ≥ 0 and Laurent monomials m1,1, . . . , m1,s1
, m2,1, . . . , m2,s2

∈
C(x , y ) (the coneσi is smooth if and only if si = 0 and no Laurent monomial is needed) such

that

U1 = SpecC
�

xαy −β , y , m1,1, . . . , m1,s1

�

U2 = SpecC
�

x , x−αy β , m2,1, . . . , m2,s2

�

.

Let us denote by S1 =C[xαy −β , y , m1,1, . . . , m1,s1
] and S2 =C[x , x−αy β , m2,1, . . . , m2,s2

] the affine

rings of U1 and U2 and by ϵ : X →A2 the structure morphism. Then, if I = (xα, y β ), we have

ϵ
�

�

−1

U1
(I ) · OU1

= (y β )⊂ S1, ϵ
�

�

−1

U2
(I ) · OU2

= (xα)⊂ S2,

which implies that the sheaf ϵ−1(I ) · OX defines a Cartier divisor on X .

As a consequence we have a cononical birational morphism ofA2-schemesψ: X →BlI A2.

If this morphism is finite then, by Proposition 0.9.1, it must coincide with the normalisation

morphism and this would provide an isomorphism of BlI A2-schemes between X and Blnαβ A
2

(which in particular is an isomorphism ofA2-schemes). Finally, the morphismψ is finite be-

cause it is proper and has finite fibres. Indeed, it is an isomorphism away from the exceptional

loci Exc(X ) and Exc(BlI A2), and it is a dominant morphism between irreducible projective

curves when restricted to the exceptional loci.

Theorem 2.6.4. Let X be a toric surface which admits a fanΣX inR2 that covers the first quadrant

R2
≥0 i.e. ΣX is generated by the rays with primitive vectors ρ0 = e1,ρr+1 = e2,ρk =mk e1+nk e2,

for k = 1, . . . , r , where mk , nk > 0 and gcd(mk , nk ) = 1. Then, there is a canonical isomorphism

X BlI A2←→∼

where I =
∏

1≤k≤r nnk ,mk
.

Proof. The statement follows by applying Lemma 2.6.3 and Lemma 0.2.1.

Theorem 2.6.5. Let α,β > 0 be two positive integers. Then,

νC[x ,y ]/nα,β
=

α ·β
gcd(α,β )

.
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Proof. Suppose first that gcd(α,β ) = 1. Then, Euclid’s algorithm provides two positive integers

h , k ∈N such that

kβ −hα= 1.

Let J be the ideal

J = nα,β ·nk ,h .

Theorem 2.6.4 implies that there exists an open affine subset U ⊂ BlJ A2, isomorphic to A2,

such that

U ∼=

(

Spec(C[x−αy β , x k y −h ]) if αβ <
k
h

Spec(C[xαy −β , x−k y h ]) if αβ >
k
h .

We put α/β > k/h , the other case being identical. If we denote by ϵ : BlJ A2→A2 the blowup

map, and by s = xαy −β , t = x−k y h the affine coordinates on U , then the restriction of the

blowup map to U is given by

U A2

(s , t ) (s h t β , s k t α).

← →
ϵ|U

←[ →

By construction, the intersection Exc(U ) = Exc(ϵ)∩U consists of the two coordinate axes of U .

In particular, given the natural map λ: BlJ A2→Blnα,β
A2, the strict transform of Exc(Blnα,β

A2)
via λ|U is the irreducible component of Exc(U ) given by C =V (t ). This implies that

νC[x ,y ]/nα,β
=multC

�

ϵ|−1
U (nα,β

�

· OU ) =α ·β ,

where, the first equality follows from the fact thatλ is an isomorphism away from its exceptional

locus Exc(λ) and the second follows from an easy computation.

Suppose now that gcd(α,β ) =δ > 1. Then, by Lemma 2.6.2 and Proposition 2.2.8, we have

νC[x ,y ]/nα,β
= νC[x ,y ]/nδ

α′ ,β ′
=δ ·νC[x ,y ]/nα′ ,β ′ =δ ·α

′ ·β ′,

where α′ =α/δ and β ′ =β/δ, i.e.

νC[x ,y ]/nα,β
=
α ·β
δ

,

as required.

Remark 2.6.6. Exploiting toric geometry techniques and the isomorphism of Theorem 2.6.4,

one can generalise the computation ofνC[x ,y ]/nα,β
to an arbitrary normal monomial ideal, along

the lines of the example fully worked out in Section 2.5.1.

Proposition 2.6.7. Let I be the ideal generated by the monomials

x a0 , x a1 y bn−1 , . . . , x ai y bn−i , . . . , x an−1 y b1 , y b0 ,

where ai > ai+1, bi > bi+1 and we also put an = bn = 0. Suppose that I is normal.

Let 0= i0 < · · ·< it = n be the strictly increasing sequence of positive integers such that

vk = (aik
, bn−ik

), for k = 0, . . . , t ,
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are the vertices of ∂QI (see Remark 0.10.6); then

(2.6.1) I =
t
∏

k=1

naik−1
−aik

,bn−ik
−bn−ik−1

.

Proof. Let us set

J =
t
∏

k=1

naik−1
−aik

,bn−ik
−bn−ik−1

,

and let QI ,Q J ⊂Q2 be defined as in Proposition 0.10.2. Then, the blowup BlJ A2 is a normal

surface, as per Remark 0.10.3, and therefore the claim is equivalent to the equality

QI =Q J .

Since, in general, we have Qnα,β
=ConvQ((α, 0), (0,β ))+Q2

≥0, we also have

Q J =ConvQ(A) +Q2
≥0

where

A =

(

(a0, 0) +
∑

j∈∆
[(ai j

, bn−i j
)− (ai j−1

, bn−i j−1
)]

�

�

�

�

�

∆⊂ {1, . . . , t }

)

.

Notice that QI ⊂Q J because v0 ∈ A and

vk = (a0, 0) +
k
∑

j=1

�

(ai j
, bn−i j

)− (ai j−1
, bn−i j−1

)
�

∈ A

for all k = 1, . . . , t . On the other hand, the inclusion A ⊂ QI is an easy consequence of the

convexity of QI and it implies Q J ⊂QI .

Example 2.6.8. Let I = (x 6, x 4 y , x 2 y 2, x y 3, y 5) be the same ideal as in Example 0.10.7. Then,

I is normal and it factors as

I = n1,2 ·n1,1 ·n2
2,1.

Remark 2.6.9. Thanks to the celebrated Pick’s theorem on lattice polygons, we can compute

the Behrend number of the ideals of the form nα,β as well as the length of normal ideals I given

as in Equation (2.6.1). In particular, we have

ℓC[x ,y ]/nα,β
=
αβ +α+β −gcd(α,β )

2

and, for I as in Equation (2.6.1),

ℓC[x ,y ]/I =

a0+ b0+
t
∑

k=1

�

det

�

aik−1
bn−ik−1

aik
bn−ik

�

−gcd(aik−1
−aik

, bn−ik
− bn−ik−1

)

�

2
.

Corollary 2.6.10. Let I ⊂C[x , y ] be the ideal (2.6.1) appearing in Proposition 2.6.7. Then BlI A2

is canonically isomorphic, as an A2-scheme, to the toric surface whose fan is generated by the

primitive vectors

ρ0, . . . ,ρt+1
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defined by ρ0 = e1, ρt+1 = e2 and

ρk =βk · e1+αk · e2 for k = 1, . . . , t

where, if δk = gcd(aik−1
−aik

, bn−ik
− bn−ik−1

), then

αk =
aik−1

−aik

δk
and βk =

bn−ik
− bn−ik−1

δk
.

In particular, there is a bijective correspondence

¨

Σ fan in N ⊗ZR∼=R2

�

�

�

�

�

N ∼=Z2,

Supp(Σ) =R2
≥0

«

1:1←→

¨

I =
t
∏

k=1

nαk ,βk

�

�

�

�

�

(αi ,βi ) ̸= (α j ,β j ) for i ̸= j ,

gcd(αi ,βi ) = 1

«

.

We note that Proposition 2.6.7 can be interpreted as a factorisation statement, as follows.

Corollary 2.6.11. Let N be the set of normal monomial ideals in C[x , y ]. Then, every I ∈N
factors as a product of ideals in N,

(2.6.2) I =
t
∏

k=1

n
δk
αk ,βk

,

where δk ≥ 1 and gcd(αk ,βk ) = 1 for k = 1, . . . , t . Such factorisation is unique up to reordering

the factors.

A similar property cannot be expected to hold on a larger class of ideals than N. For

instance, as mentioned in Remark 0.10.3, if we drop the normality assumption we have, for

the same ideal, two factorisations m3 =m · (x 2, y 2), where (x 2, y 2) is not normal.

Combining Lemma 2.6.2, Proposition 2.2.8, and Theorem 2.6.4 with one another, we also

obtain the following correspondence.

Theorem 2.6.12. Let I ⊂ C[x , y ] be a normal monomial ideal of finite colength. There is a

bijective correspondence

¨

ideals nδα,β appearing in the

factorisation (2.6.2) of I

«

1:1←→

¨

irreducible

components of EIA2

«

.

In particular, if J ⊂C[x , y ] is an arbitrary monomial ideal and I = J is its normalisation, then

E JA2 has at most t irreducible components, where t is as in Equation (2.6.2).

Remark 2.6.13. Corollary 2.6.11 and Theorem 2.6.12 can be seen as explicit instances of the

factorisation theory developed by Lipman [48, Section V].
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2.7 The Behrend function of a fat point via normalisation

In this section we will prove a formula (see Theorem 2.7.2 below) for the Behrend number of

a nonnormal monomial ideal in terms of the Behrend number of its normalisation and the

normalisation map.

Let I ⊂ C[x , y ] be a monomial ideal of finite colength. When BlI A2 is not normal, the

computation of the Behrend number of I poses some difficulties, but the main result in this

section resolves them explicitly. More precisely, we shall prove a general formula for the

Behrend number

(2.7.1) νC[x1,...,xN ]/I =
∑

D⊂EIAN

multD

�

EIA2
�

of an arbitrary fat point I ⊂ A = C[x1, . . . , xN ] supported at 0 ∈ AN . Such formula involves

algebraic data defined through the normalisation morphism

µI : ZI →BlI AN .

We note here that, when I is monomial, the normalisation ZI is explicit, being equal to PA[I t ]
(cf. Section 0.10) and one has ZI =BlI A2 when N = 2 (and I is monomial), where I is defined

in Equation (0.10.1).

2.7.1 The key example

We present in this subsection the key example (with N = 2) of the more general formula that

will be proven just afterwards (Theorem 2.7.2).

Example 2.7.1. Let k ≥ 2 be an integer. Then, the ideal I = (x k , y k )⊂C[x , y ] satisfies

νC[x ,y ]/I = ℓC[x ,y ]/I = k 2,

by Example 2.2.4. As explained in Example 0.10.9, the blowup BlI A2 identifies with the A2-

surface V (v x k −u y k )⊂A2×P1. As a consequence, BlI A2 is singular in codimension 1 and

hence it is not normal. Then, as observed in Example 0.10.8, Proposition 0.10.2 implies that

there is a canonical isomorphism of A2-schemes between BlmA2 and the normalisation of

BlI A2. Under this identification, the normalisation map µI : BlmA2→BlI A2 can be realised

as the restriction of the morphism

A2×P1 A2×P1

((x , y ), [u : v ]) ((x , y ), [u k : v k ])

← →

←[ →

to the subscheme BlmA2 ⊂A2×P1. The exceptional locus D = Exc(BlI A2) is irreducible and it

satisfies

deg
�

Exc(BlmA2)
µI−→D

�

= k ,

for such map agrees with the map P1 → P1 sending [u : v ] 7→ [u k : v k ]. Notice that, if

ϵ : BlmA2 → A2 is the blowup map and YI ⊂ BlmA2 is the subscheme defined by the ideal

sheaf ϵ−1(I ) · OBlmA2 ⊂OBlmA2 , then

multExc(BlmA2)(YI ) = k ,
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hence νC[x ,y ]/I = k 2 is also obtained as

k 2 = deg
�

Exc(BlmA2)
µI−→D

�

·multExc(BlmA2)(YI ).

2.7.2 The general formula

Let I ⊂ A = C[x1, . . . , xN ] be the ideal defining a fat point in AN supported at 0 ∈ AN . The

normalisation morphism

µI : ZI →BlI AN

is a finite morphism by Proposition 0.9.1 (and it is induced by the inclusion of A-algebras

A[I t ] ,→ A[I t ] in the special case where I is monomial, cf. Section 0.10). Note that ZI is also a

blowup of a fat point inAN supported at 0 ∈AN , and µI is anAN -morphism. In other words,

there is a commutative diagram

ZI BlI AN

AN

← →
µI

←

→ϵ̄
←→

ϵ

where µI restricts to a morphism Exc(ϵ)→ Exc(ϵ) between exceptional loci. Let

D1, . . . , Ds ⊂ EIAN

be the irreducible components of the exceptional locus Exc(ϵ), each of which is taken with the

reduced structure. Note that, since EIAN is purely of codimension 1, each Di has dimension

N − 1. For instance, if N = 2, each Di is a (possibly singular) rational curve. Consider the

Cartier divisor

YI =µ
−1
I (EIAN ) = ϵ̄−1(V (I )) =V (ϵ̄−1(I ) · OZI

)⊂ ZI ,

and notice that YI ,red = Exc(ϵ̄). Hence YI and the exceptional divisor of ZI share the same

irreducible components. For each i = 1, . . . , s , let

V (i )1 , . . . , V (i )ki
⊂ YI

be the irreducible components covering Di , each taken with the reduced structure. The

restrictions

µi j =µI

�

�

V (i )j
: V (i )j →Di

are finite dominant morphisms of varieties, and we set

di j = degµi j .

The subscheme YI ⊂ ZI is an effective Cartier divisor, hence it is determined by an invertible

ideal sheaf I ⊂OZI
. Consider the canonical section

sI ∈ H0 (ZI ,I ∗) ⊂ C(ZI ) =C(BlI AN )

attached to the Cartier divisor YI . For every pair (i , j ), where i = 1, . . . , s and j = 1, . . . , ki , we

can define

ei j = ordV (i )j
(sI ) =multV (i )j

(YI ),
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namely we set ei j to be the order of vanishing of the rational function sI ∈ C(ZI ) along the

prime (N −1)-cycle V (i )j .

We can now state and prove an explicit formula for the Behrend number of I .

Theorem 2.7.2. Let I ⊂C[x1, . . . , xN ] be the ideal of a fat point X ,→AN . Then

νC[x1,...,xN ]/I =
s
∑

i=1

ki
∑

j=1

di j ei j .

Proof. We know by Proposition 0.9.4 applied to Y = ZI and X =BlI AN that

ordDi
(sI ) =

ki
∑

j=1

ordV (i )j
(sI ) ·

�

C(V (i )j ) :C(Di )
�

=
ki
∑

j=1

ei j di j .

for every i = 1, . . . , s . On the other hand, we have

ordDi
(sI ) =multDi

(EIAN ).

The sought after relation then follows from Equation (2.7.1) by summing over i .

Example 2.7.3. We generalise here Example 2.7.1. Let h , k ≥ 1 be integers and let δ= gcd(h , k )
be their greatest common divisor. Consider the complete intersection ideal Ih ,k = (x h , y k ),
and the normalisation map

µ: Blnh ,k
A2→BlIh ,k

A2.

Then, the exceptional loci (Enh ,k
A2)red and (EIh ,k

A2)red are both irreducible, and degµ|(Enh ,k
A2)red

=
δ. This follows from the formulas in Lemma 2.6.2 and Theorem 2.7.2, namely

nh ,k = nδh ′,k ′

where k ′ = k/δ and h ′ = h/δ.

For instance, given I4,6 = (x 4, y 6), one has n4,6 = n2
2,3 and, as a consequence of Proposi-

tion 2.2.8, up to isomorphism, the normalisation map has the form

µ: Bln2,3
A2→BlI4,6

A2.

Then, with the same notation as in Theorem 2.7.2, νC[x ,y ]/I4,6
= 24 because I4,6 is a complete

intersection, d = deg(µ|En2,3
) = 2= gcd(4, 6) because of what we just said, and a direct computa-

tion in toric geometry (see Section 2.5.1) shows e = 12 where, if ϵ : Bln2,3
A2→A2 denotes the

blowup map, then e =multEn2,3
(ϵ−1(I4,6) · OBln2,3 A2 ).

Example 2.7.4. Let I ⊂m⊂C[x , y ] be an ideal of finite colength generated by s +1 monomials

m0, . . . , ms ∈C[x , y ],

all of degree δ. Then, by Proposition 0.10.2, the normalisation of BlI A2 is given by BlmA2. In

particular, the exceptional locus Exc(BlI A2) is irreducible. Consider the rational map

A2 Ps

(a , b ) [m0(a , b ) : · · · : ms (a , b )]

← →
ϕI

←[ →
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whose indeterminacy locus is the origin {0} = V (
p

I ) ⊂ A2. The fact that all the monomials

have the same degree δ implies that ϕI induces a morphism

P1 Ps

[a : b ] [m0(a , b ) : · · · : ms (a , b )].

← →
ϕI

←[ →

Let X ⊂A2×Ps be the Zariski closure of the graph of the map ϕI , i.e.

X =
�

((a , b ), q ) ∈ (A2∖ {0})×Ps
�

� q = [m0(a , b ) : · · · : ms (a , b )]
	

⊂A2×Ps .

Then, by Proposition 0.2.2, there is a canonical isomorphism of A2-schemes BlI A2 ∼= X . We

claim that, if we identify Ps ∼= {0}×Ps ⊂A2×Ps , then Im(ϕI ) = Exc(ϵI )where ϵI : X →A2 is the

structure morphism, i.e. the restricion of the canonical projection ontoA2. Since Im(ϕI ) has

dimension 1 and Exc (ϵI ) is irreducible, in order to prove Im(ϕI ) = Exc(ϵI ), it is enough to prove

Im(ϕI )⊂ Exc(ϵI ).
Let p = (0, [m0(a , b ) : · · · : ms (a , b )]) be a point in Im(ϕI ) and let La ,b = V (b x − a y ) ⊂ A2

be a line trough the origin of A2. Let us denote by ϕa ,b the restriction ϕa ,b =ϕI |La ,b
and by

Xa ,b ⊂ X the Zariski closure of its graph in A2 ×Ps . Then, the map ϕa ,b is constant and we

have

ϕa ,b ≡ [m0(a , b ) : · · · : ms (a , b )].

As a consequence, p ∈ Xa ,b ⊂ X which proves Im(ϕI )⊂ Exc(ϵI ).
Notice that, if k > 0 is an integer and J ⊂C[x , y ] is the ideal J = (m k

0 , . . . , m k
s ), then Im(ϕI ) =

Im(ϕ J ) and

deg(ϕ J : P1→ Im(ϕ J )) = k ·deg(ϕI : P1→ Im(ϕI )).

Proposition 2.7.5. Let h , k ∈N be two positive integers and let δ= gcd(h , k ) be their greatest

common divisor. Consider the ideals I = (x h , y h ), J = (x k , y k ) in C[x , y ], and their product

I J = (x h+k , x k y h , x h y k , y h+k ).

Then, the Behrend number of the subscheme defined by I J ⊂C[x , y ] is

νC[x ,y ]/I J =δ · (h +k ).

Proof. First of all we observe that, by Proposition 0.10.2, there is a canonical isomorphism of

A2-schemes between BlmA2 and the normalisation of BlI J A2. We have (see Section 0.9) the

following commutative diagram

BlI A2

BlmA2 BlI J A2 A2

BlJ A2

←

→

ϵI

← →
µI J

←

→
µI

←

→
µJ

← →
ϵI J

←
→

θI

←
→ θJ

←

→

ϵJ
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where all the maps are birational morphisms. The maps ϵI ,ϵJ ,ϵI J and θI ,θJ are the blowup

morphisms and µI ,µJ ,µI J are the normalisation morphisms. Moreover, any composition

BlmA2 → A2 which connects BlmA2 and A2 coincides with the blowup map ϵm : BlmA2 →
A2. Notice that, since Exc(ϵm) is irreducible, also Exc(ϵI ), Exc(ϵJ ) and Exc(ϵI J ) are irreducible

because they are dominated by Exc(ϵm).
As a consequence, in order to compute (through Theorem 2.7.2) the Behrend number of

the ideal I J , we have to compute only two numbers, namely

e =multExc(ϵm)
�

ϵ−1
m (I J ) · OBlmA2

�

and

d = deg
�

µI J

�

�

Exc(ϵm)

�

.

We start from the computation of e . As usual, BlmA2 is covered by two charts U0 and U1

isomorphic to A2. In order to compute e , it is enough to focus on U0. We introduce toric

coordinates a , b and the map ϵm restricts to the map

U0 A2

(a , b ) (a b , b ).

← →
ϵm|U0

←[ →

Hence, we have

ϵm
�

�

−1

U0
(I J ) ·C[a , b ] = (b h+k )⊂C[a , b ],

and, as a consequence, e = h +k .

Now we move to the computation of d . We split this computation in two steps.

Step 1: Suppose δ= 1.

Since all the exceptional loci of the varieties in the above diagram are irreducible rational

curves and the involved maps are all dominant, we get a commutative diagram of fields

extensions
C(t )

C(t ) C(t )

C(t )

←-

→

ϕI ←
-

→ ψI

←-→ϕI J

←
-

→

ψJ←-

→

ϕJ

where, up to canonical identifications, we have

ϕ• =µ•
�

�

∗
Exc(BlmA2) : C(Exc(Bl•A2)) C(Exc(BlmA2))←→

and

ψ• = θ•
�

�

∗
Exc(BlI J A2) : C(Exc(Bl•A2)) C(Exc(BlI J A2)).←→
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Now, as a consequence of general field theory and of Example 2.7.1, we have

[C(t ) :ψI (C(t ))] · [C(t ) :ϕI J (C(t ))] = [C(t ) :ϕI (C(t ))]

[C(t ) :ψJ (C(t ))] · [C(t ) :ϕI J (C(t ))] = [C(t ) :ϕJ (C(t ))]

[C(t ) :ϕI (C(t ))] = h

[C(t ) :ϕJ (C(t ))] = k ,

which, together with the hypothesis δ= gcd(h , k ) = 1, imply

[C(t ) :ψI (C(t ))] = h ,

[C(t ) :ψJ (C(t ))] = k ,

[C(t ) :ϕI J (C(t ))] = 1.

Thus, d =δ= 1.

Step 2: Suppose δ > 1. Consider the positive integers h ′ = h/δ and k ′ = k/δ and the ideals

I ′ = (x h ′ , y h ′ ) and J ′ = (x k ′ , y k ′ ). Let f , f ′ and g be the rational maps defined as follows:

A2 P3

(x , y ) [x h+k : x h y k : x k y h : y h+k ]

← →
f

←[ →

A2 P3

(x , y ) [x h ′+k ′ : x h ′ y k ′ : x k ′ y h ′ : y h ′+k ′ ]
← →

f ′
←[ →

P3 P3

[w0 : w1 : w2 : w3] [w δ
0 : w δ

1 : w δ
2 : w δ

3 ].

← →
g

←[ →

Then, a trivial computation shows that the diagram

A2 P3

P3

←→f

←→
f ′

←→

g

commutes. By Proposition 0.2.2, we have canonical isomorphisms of A2-schemes

(2.7.2) X ∼=BlI J A2, X ′ ∼=BlI ′ J ′A2

where, if we denote by Γ ( f ) and Γ ( f ′) the graphs of the rational maps f and f ′, then X , X ′ ⊂
A2 × P3 are respectively defined as the Zariski closures of Γ ( f ) and Γ ( f ′), i.e. X = Γ ( f ) and

X ′ = Γ ( f ′), and theA2-structure morphism is given, in both cases, by the restriction of the first

projection. Define now the morphism λI J as the restriction of the map

idA2×g : A2×P3→A2×P3
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to X ′. Up to the identifications (2.7.2) we have a commutative diagram

BlI ′A2 BlI A2

BlmA2 BlI ′ J ′A2 BlI J A2 A2

BlJ ′A2 BlJ A2

← →
λI

←

→

ϵI

←

→
µI ′

←
→

µJ ′

← →
µI ′ J ′

←

→

θI ′

← →
λI J

←

→ θJ ′

← →
ϵI J

←

→ θJ

←

→

θI

← →
λJ

←

→

ϵJ

where

◦ the maps µI ′ ,µJ ′ and µI ′ J ′ are the normalisation morphisms,

◦ the maps λI ,λJ are defined similarly to λI J ,

◦ the compositions µI =λI ◦µI ′ ,µJ =λJ ◦µJ ′ and µI J =λI J ◦µI ′ J ′ are the normalisation

morphisms mentioned above,

◦ any composition Bl•A2→A2 agrees with the blowup map ϵ• : Bl•A2→A2.

We know, by general theory, that

deg
�

µI J

�

�

Exc(ϵm)

�

= deg
�

µI ′ J ′
�

�

Exc(ϵm)

�

·deg
�

λI J

�

�

Exc(ϵI ′ J ′ )

�

and we also know, by Step 1, that

deg
�

µI ′ J ′
�

�

Exc(ϵm)

�

= 1.

Therefore, we have

d = deg
�

λI J

�

�

Exc(ϵI ′ J ′ )

�

.

Finally, as a consequence of Example 2.7.4, if we call E = (X ′∩{0}×P3)red the exceptional locus

of X ′, then we have

degλI J

�

�

E
=δ.

This complete the proof.

Example 2.7.6. For h = k we find the formula

νC[x ,y ]/(x h ,y h )2 = 2h 2 = 2 ·νC[x ,y ]/(x h ,y h ),

which may also be deduced from Proposition 2.2.8. While, for I = (x 2, y 2)(x 3, y 3) and J =
(x 2, y 2)(x 6, y 6)we find

νC[x ,y ]/I = 5, νC[x ,y ]/J = 16.

Remark 2.7.7. Letµ•, for • ∈ {I , J , I J , I ′, J ′, I ′ J ′}, be defined as in the proof of Proposition 2.7.5,

and let ϑ• be the restrictions ϑ• =µ•|Exc(BlmA2). Then, up to isomorphism, the maps ϑ• are of

the form

ϑ• =π ◦v1,d : P1→Ps
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where

v1,d : P1→Pd

is the d -th Veronese embedding of P1 for some positive integer d ≥ 1 and

π: Pd ¹¹Ë Ps

is the projection onto some coordinate projective subspace of dimension s ≤ d .

The blowup BlI J A2 of a product of ideals as in Proposition 2.7.5 has a peculiarity that we

find here for the first time: its exceptional locus is (in general) not normal. For example, if

I = (x 3, y 3) and J = (x 2, y 2), the exceptional locus Exc(BlI J A2) has two cusps as singularities.

The general situation is described by the following result.

Proposition 2.7.8. Fix positive integers h , k > 1 and let δ= gcd(h , k ) be their greatest common

divisor. Set

I = (x h , y h ) · (x k , y k ) = (x h+k , x h y k , x k y h , y h+k )⊂C[x , y ].

Then, the exceptional locus of BlI A2 is an irreducible projective rational curve with two singu-

larities of local equations of the form αh/δ −βk/δ = 0.

Proof. As explained in Example 2.7.4, the image of the map

P1 P3

[a : b ] [a h+k : a h b k : a k b h : b h+k ]

← →
ϕI

←[ →

is isomorphic to the exceptional locus of BlI A2. The statement follows now by an easy compu-

tation.

Remark 2.7.9. Let h , k > 1 be two natural numbers such that gcd(h , k ) = 1 and h 2 < h +k < k 2.

Consider the ideals I = (x h , y h ) and J = (x k , y k ). Then, we have the following inequalities:

νC[x ,y ]/I <νC[x ,y ]/I J <νC[x ,y ]/J .

For instance, this happens for h = 2 and k = 3.

Corollary 2.7.10 (of Proposition 2.7.5). Let d1, . . . , ds be positive integers. Given the ideals

Ik = (x dk , y dk ), for k = 1, . . . , s , we have

νC[x ,y ]/I1···Is
= gcd(d1, . . . , ds ) ·

s
∑

k=1

dk .

Example 2.7.11. Consider the ideal I = (x , y ) · (x 2, y 2) · (x 3, y 3) · · · (x s , y s ) then

νC[x ,y ]/I =
s
∑

k=1

k =

�

s +1

2

�

.
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2.8 Some difficulties in dimension 3

In Section 2.5 we proved that any normal monomial ideal I ⊂C[x , y ] factors in a unique way as

a product of powers of ideals of the form nα,β . Furthermore, we noticed in Theorem 2.6.12 that

there is a bijective correspondence between the ideals that appear in such factorisation and the

irreducible components of the exceptional divisor of the blowup BlI A2. This correspondence

has allowed us, in numerous cases, to calculate the Behrend number of I . Unfortunately, as

we show in the discusion below, the situation is more complicated in higher dimension.

Let I , J ⊂C[x , y , z ] be the curvilinear ideals defined by

I = (x 2, y , z ), J = (x , y 2, z ),

and let mA3 = (x , y , z )⊂C[x , y , z ], be the maximal ideal of the origin 0 ∈A3. We want to study

the blowup of the ideal I J . We will show that the exceptional divisor EI JA3 decomposes into

three irreducible components instead of the expected two.

First, we deal with the blowup ϵI : BI =BlI A3→A3 and then we will move to the analysis

of BlI J A3. Since I is a complete intersection, we have

νC[x ,y ,z ]/I = ℓC[x ,y ,z ]/I = 2,

by Example 2.2.4. Moreover, as a consequence of [21, Ex. IV-26], we have

BI =

¨

((x , y , z ), [u0 : u1 : u2])

�

�

�

�

�

rank

�

x y z 2

u0 u1 u2

�

≤ 1

«

⊂A3×P2.

Notice that Exc(ϵI )∼=P2 and that the threefold BI is singular along the projective line

L =
�

((0, 0, 0), [λ :µ : 0])
�

� [λ :µ] ∈P1
	

⊂ BI .

Let us now focus on the open neighbourhood of L defined by

U = BI ∩ ((A3×{u0 ̸= 0})∪ (A3×{u1 ̸= 0})).

The projection U → P1 sending (p , [u0 : u1 : u2]) 7→ [u0 : u1] is an isotrivial family of singular

surfaces of type A1, which shows that BI is normal (this can also be deduced from a general

version of Proposition 0.10.2, see [17, Prop. 1.1]). Notice that the base of the family corresponds

to the pencil of planes containing V (I ) as a closed subscheme.

Alternatively, similarly as we have done in Example 2.3.10, we could have built BI in the

following way. Let ϵmA3 : BmA3 =BlmA3 A3→A3 be the blowup of A3 at the origin. Then, a direct

computation shows that

ϵ−1
mA3
(I ) · OBmA3

=H1 ·H2,

whereH1 is the ideal sheaf of a Cartier divisor andH2 is the ideal sheaf of a reduced point p ∈
Exc(ϵmA3 )⊂ BmA3 . Therefore, the decomposition into irreducible components of the exceptional

locus of BmA3 ·I =BlmA3 ·I A3 is given by

Exc(BmA3 ·I ) = S1 ∪S2,

where
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◦ S1
∼=P2,

◦ S2
∼=Blq P2 for some q ∈P2, and agrees with the strict transform of the exceptional locus

Exc(BmA3 ) via the blowup map λmA3 : BmA3 ·I → BmA3 induced by Lemma 0.2.1,

◦ S1 ∩S2 = Exc(S2)∼=P1.

Now, consider the following canonical morphisms

BmA3 BmA3 ·I BI←→

λmA3 ←→
λI

where the existence of λI follows by the universal property of BI . Since BmA3 ·I and BmA3 are

smooth and BI is normal, all the morphisms above have connected fibres by Theorem 0.9.2.

In particular, they are isomorphisms outside their exceptional loci, λI |S1
: S1→ Exc (BI ) is an

isomorphism and λI |S2
: S2 → L ⊂ Exc (BI ) coincides with the tautological projection of the

blowup of the projective plane at a point.

Both constructions confirm the correspondence in Theorem 2.6.12. Unfortunately, such

relation cannot, in general, be expected in dimension 3. To see this, consider this time the

ideal K = I J . Then, as above, we have canonical morphisms

BmA3 BmA3 ·K BK←→

θmA3 ←→
θK

and we can apply again Theorem 0.9.2 because BmA3 ·K and BmA3 are smooth and BK is normal

as per Proposition 0.10.2. The analogue of the description above is

◦ Exc(BmA3 ·K ) = S1 ∪S2 ∪S3,

◦ S2
∼=P2 ∼= S3,

◦ S1
∼=Blq1,q2

P2, and agrees with the strict transform of the exceptional locus Exc(BmA3 ) via

the blowup map θmA3 ,

◦ S2 ∩S3 = ;,

◦ Si ∩S1 = L i for i = 2,3, where L2 and L3 are the irreducible (disjoint) components of

Exc(θmA3 |S1
).

Finally, one can prove that the map θK contracts one line to a singular point, namely the

strict transform (via θmA3 ) of the line trough the two points that correspond to q1, q2 via the

isomorphism S1
∼=Blq1,q2

P2 mentioned above. As a consequence, the irreducible components

of Exc(BK ) are:

θK (S1)∼=P1×P1, θK (S2)∼=P2 ∼= θK (S3).

One can also find, via a direct computation, the Behrend number of the ideal K , which is

νC[x ,y ,z ]/K = 8.

The above discussion shows that, even for towers, generalising to dimension 3 the con-

structions and algorithms carried out in Sections 2.3 and 2.4 is a nontrivial task, that we leave

for future research.



Appendix A

A tale of blowups

The blowup of an n-dimensional quasi-projective smooth variety X along a (closed) k -dimensional

smooth submanifold Z is well understood in all dimensions (see, for instance [21, Chapter 4]).

This is a consequence of the fact that the blowup can be done in analytic coordinates. More

precisely, one can write X =U ∪V where U , V are open in the euclidean topology such that

• V ∩Z = ;, and U is an analytical neighbourhood of the submanifold Z ,

• ∀p ∈ Z there exists an analytic neighbourhood W of p in X such that the pair (Z ∩U ∩
W ,U ∩W ) is (analytically) isomorphic to a pair (Ck ×{0Cn−k } ,Ck ×Cn−k ),

now one can apply [21, Prop. IV-25] to compute BlZ∩U∩W U ∩W , and glue all the opens so

finding BlZ X . This procedure is well posed as proven, for instance, in [33, Sec 4.6.2].
Quite less clear, however, is the blowup along singular subvarieties. The first non-trivial

case is that of fat points on surfaces that we discussed in Chapter 2, the second is that of fat

points and singular curves in dimension 3. Up to analytical equivalence, the curve singularities

that one can have are combinations of the following three kinds:

• non reduced components,

• embedded fat points,

• (isolated) singularities of integral curves.

In this appendix we will discuss the simplest case, namely 1-dimensional nodes which, analyt-

ically, can be treated as 2 incident lines.

When we talk about blowup with centre the union of two incident lines L , M ⊂A3, we mean

the blowup with the centre the ideal intersection IL ∩ IM , where IL and IM are respectively

the ideals of L and M . Despite this, one can carry out several processes and obtain different

varieties. For instance, one can first blowup one line and then the other or, one can first

separate the lines by blowing up the origin and then blowup the strict transform of the lines or

even blowup directly the product ideal. All these choices produce different birational models

of the affine space which interconnected as described in the Figure A.1.

Notice that the blowups along intersection ideal and product ideal produce varieties with

an isolated (singular) conifold point. The resolutions of these conifolds are also shown in

Figure A.1.

123
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X5 =Blp A3

L M

X3 =BlM A3

eL r

D
eE

X4 =BlIL ·IM
A3

q
X2 =BlL∪M A3 =BlIL∩IM

A3

E F

X1 =BlL A3

fM

Y1 =BlE X2 =Bl
fM X1

=BlIL ·(IL∩IM )A
3

C1

Y2 =Bl
eL X3 =BlF X2

=BlIM ·(IL∩IM )A
3

C2

C3

Z1 =BlC1
Y1 =BlC2

Y2 =Blq X2 =Bl
eE X4

=Bl(IL∩IM )·Ip
A3

C4

Z2 =BlL∪M X5 =BlD X4

=BlIL ·IM ·Ip
A3

W =BlC3
Z1 =Blr X4 =BlC4

Z2 =Bl(IL∩IM )·IL ·IM ·Ip
A3

A3

p

L M

LEGEND

Projective line P1 Affine line A1

0-th Hirzebruch F0
∼=P1×P1 P1×C

Projective plane P2 Blp1
(P1×C)

degree 7 Del Pezzo dP7
∼=Blp1,p2

P2 Small resolution

Flop Conifold point

Figure A.1. An example of blowups of A3



Appendix B

Inclusion–exclusion principle in

algebraic geometry

We conclude the thesis with an appendix of a more philosophical than technical nature. Also

in this appendix we deal with blowups at reducible and non-reduced centres.

In what follows, we will denote by V the usual functor that associates, to each ideal I of a

ring R , the following subscheme of Spec A:

V (I ) = Spec
�

A

I

�

.

It is remarkable that even if the union of two subschemes ZI = V (I ) and Z J = V (J ), of a

scheme Spec(A), is, by definition, V (I ∩ J ), also the subscheme V (I · J ), in some sense, can

be thought as a union. A union with multiplicity! The following example should serve as a

clarification.

Example B.0.1. Let I = (x ) and J = (x , y ) be two ideals of C[x , y ]. They define the y -axis V (I )
and the origin V (J ) of A2 = SpecC[x , y ]. We have I ⊂ J and, as a consequence, V (J )⊂ V (I ).
Therefore,

V (I ) =V (I ∩ J ) =V (I )∪V (J ).

On the other hand, I · J = (x 2, x y ) is the ideal of the y -axis with an embedded origin added.

Let I1, I2 ⊂C[x1, . . . , xn ] be two ideals and let Z1 =V (I1) and Z2 =V (I2) the corresponding

subschemes of the affine spaceAn . We want to understand the blowup BlZ1∪Z2
An =BlI1∩I2

An

and we want to compare it with BlI1·I2
An . This type of comparison is very useful in practice

when one wants to make explicit calculations. For instance, the blowup BlI1·I2
An is better

understood, via Lemma 0.2.1, than BlI1∩I2
An .

We would like to have a decomposition of the following form:

(B.0.1) “Z1 ∪Z2 = ((Z1 ∪Z2)∖ (Z1 ∩Z2))∪ (Z1 ∩Z2)”

which would help break down the problem into simpler subproblems. Although it seems that

the Zariski topology is so rigid that it does not allow such a decomposition, a formula similar

to (B.0.1) can be obtained thanks to the following lemma.

125
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Lemma B.0.2. Let R be a ring and let I , J ⊂R be two ideals. Then,

I ∩ J = ((I · J ) : (I + J )).

Remark B.0.3. One can show that the division operation between ideals corresponds to the

following operation between (reduced) schemes:

V (I : J ) =V (I )∖V (J ).

Proof. (of Lemma B.0.2) The proof is a simple exercise in commutative algebra. One first

proves (see [2, Exercise 1.12]) the following formula for a triple of ideals I , J , K ⊂R :

(I : J +K ) = (I : J )∩ (I : K ),

from which it follows

((I · J ) : (I + J )) = ((I · J ) : I )∩ ((I · J ) : J ) = I ∩ J .

Remark B.0.4. Lemma B.0.2 describes the relationship between the schemes associated with

the product and the intersection of two ideals (Equation (B.0.2)) and provides an inclusion-

exclusion principle for subschemes (Equation (B.0.3)):

(B.0.2) V (I ∩ J ) =V (I · J )∖V (I + J )

(B.0.3) V (I )∪V (J ) =V (I · J )∖ (V (I )∩V (J ))

Example B.0.5. Equation (B.0.3) in Remark B.0.4 justifies the fact that (see in Figure A.1) the

exceptional divisor of X2 in Appendix A has two irreducible components (respectively corre-

sponding to IL and IM ), while the exceptional divisor of X4 has three irreducible components

(two respectively corresponding to IL and IM , and the third corresponding to IL + IM = Ip ).
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